Это скорее деформализация теории вероятностей. Теория вероятностей опирается на очень мощное предположение о независимости случайных величин (и на почти совсем уж неправдоподобное, что независимы величины, с которыми мы работаем). А в нечёткой логике такого предположения нет. Вместо него вводятся (а не выводятся, в смысле не выводятся из независимости и других аксиом) правила расчёта "степени уверенности", причём в разных задачах разные (и произвольно выбираемые).
В общем-то, некая практическая потребность в этом есть. Мне как-то сразу вспомнился проект более чем 20-летней давности, система медицинской диагностики для судов Черноморского Пароходства (эпоха пришествия Эффективных Менеджеров, которые начали "резать косты", в частности, увольняя судовых врачей - а чтобы хоть как-то можно было заболевшим помочь, на корабельные компы предлагалось ставить программу, которая по опросу пациента делает вывод о то, что за болезнь, с практическим выводом - вызывать вертолёт для срочной эвакуации, оказать первую помощь и списать на берег в ближайшем порту, или же дать лекарство и посоветовать дотерпеть до дому). Использовался батюшка Байес. Руководитель медицинской части проекта, д.м.н. и одновременно опытный судовой врач для заболеваний по списку указал вероятности
тех или иных симптомов, а также априорные вероятности
этих заболеваний. Работало неожиданно хорошо - но вывод был чрезмерно уверенным, в смысле вероятность наиболее вероятного заболевания выдавалась очень близкой к единице, тогда как следующие по вероятности выглядели почти нереальными, в противоречии с медицинским опытом. Причина была в том, что проявления разных симптомов сильно коррелируют, а в матмодели они принимались независимыми. Побороли методом нашего школьного плотника, по совместительству преподавателя труда - "фугуй, сынок, фугуй! Дядя придёт - топориком подровняет" - извлекали из вероятностей корень достаточно высокой степени (такой, чтобы полученные вероятности не раздражали своей безапелляционностью врачей), потом нормировали к единичной сумме. Ну, а "нечёткие" вместо того, чтобы сперва рассчитывать строго вероятностно, действуя точным фуганком (длинный рубанок для особо ровной обработки), а потом ввести поправку топором, сразу начинают с отказа от мощного, но нереалистичного предположения. Хотя вид "нечёткого Байеса" я не представляю.