Был бы я хоть немного бум-бум в создании графических программ, обязательно бы такую сделал. Там должно быть не так уж и сложно. Но только я в графике ни бум-бум. (((
Делал я в десятом классе для трёхмерных фигур такое. На Паскале. Просто проецируете узлы на плоскость
, выводя только две её координаты. Самым сложным было сообразить, как меняются координаты вершины при повороте относительно осей. А в программировании сложного не было абсолютно ничего.
Правда, это без изометрии. Рисунок
Утундрия так получить можно, а вот конструкцию
EtCetera - сильно сомневаюсь.
Да, по теме: видел представление гиперкуба через развёртку. То есть восемь кубов, соединённых "грибом", с пояснением: "а вот эти грани на самом деле - одни и те же. Их надо склеить через четвёртое измерение." Не самая наглядная конструкция, зато видно что объёмы трёхмерных граней гиперкуба на самом деле равны, и ясно с какой на какую можно перейти.