я от преподавателя одного мельком что-то слышал, что логарифм произведения в сумму логарифмов разбивать в комплексном случае нельзя почти всегда.
Это неверное утверждение (во всяком случае, легкомысленное). Всегда можно, надо только учитывать многозначность логарифма. Конкретнее: надо выбирать для каждого слагаемого такие ветви, чтобы при их сложении получалась ровно та ветвь логарифма, которая была выбрана изначально. И поскольку речь о разложении в ряд -- всё оказывается тривиально: сначала раскладываем вообще ни о чём не задумываясь, а потом (после собирания всех членов) просто корректируем (в случае необходимости) нулевой член ряда на

так, чтобы он оказался равным значению исходного логарифма в центральной точке.
но здесь-то все куда проще ведь-все по степеням

так и разложилося....
ну так сделайте у себя формальную замену

-- всё ровно так же и разложиться....