Это лишний раз подтверждает, что Вы не понимаете, о чём говорите. Если у Вас какие-то "правила" имеются, то их можно сформулировать и записать в виде логических аксиом, правил вывода и специфических геометрических аксиом. При этом совершенно не важно, совпадают ли логические аксиомы и правила вывода с аксиомами и правилами вывода классической логики (или какой-то другой из множества существующих логических систем), а геометрические аксиомы - с аксиомами евклидовой геометрии (или какой-то другой из множества существующих геометрий). Если Вы ничего этого сделать не можете, значит, Вы вообще не можете ни о чём рассуждать в своей "неаксиоматизируемой" геометрии. У Вас нет никаких исходных положений и нет никаких средств из одних утверждений получать другие. Вам это уже пытались объяснить, но Вы ничего понимать не хотите. Ну что же, это Ваше дело.
К сожалению, Вы неадекватно воспринимаете ситуацию. Попробую пояснить Вам это на примере. Я специально не изучал правил логики. Более того, я не знаю никого из коллег, кто изучал бы специально эти правила. Но я владею логикой, т.е. во всех практических случаях, когда мне нужно сделать какие-то умозаключения, я их делаю на основе логики, не задумываясь при этом, какое именно правило логики я использую. Логика нужна мне для практических целей, и я владею ей, не думая о ее правилах.
Точно так же обстоит дело с геометрией. Я физик, и меня интересует вопрос применения геометрии. Я владею ей и действую по ее правилам, не размышляя об этом. Правила построения геометрии есть, и я их знаю, но они сильно отличаются от того, что знаете Вы.
Извините, но Вы напоминаете мне второклассника, узнавшего правила арифметики, но еще не знающего алгебры. Этот второклассник заглядывает через плечо своему старшему брату, решающему алгебраические уравнения, и удивляется тому, как это он складывает иксы и прочие буквы, хотя даже ему известно, что складывать можно только числа и желательно целые. Но второклассник понимает, что он еще мало знает и, что надо еще учиться. Этим он отличается от заслуженных участников форума, которые полагают, что они все знают, а уж геометрию-то они знают во всех деталях, и если кто-то думает иначе, то он занимается ерундой или лженаукой.
Все обобщенные геометрии получаются в результате обобщения собственно евклидовой геометрии. Это единственная геометрия, непротиворечивость которой доказана. (Замечу, что непротиворечивость – это понятие, относящееся к методу построения геометрии, но не к самой геометрии. Это значит, что могут существовать методы построения геометрии, где вопрос о непротиворечивости метода построения просто является бессмысленным).
Для построения дискретной геометрии как обобщение евклидовой геометрии надо произвести перезагрузку в описании евклидовой геометрии. Это значит, что нужно описать все понятия и утверждения евклидовой геометрии в терминах мировой функции (или функции расстояния, что по существу одно и то же). Это нужно сделать потому, что ни одно из базовых понятий евклидовой геометрии ( размерность, прямая, угол, линейная независимость, разложение вектора на составляющие и т.д.) кроме понятия расстояния не определены дискретной геометрии. Кроме того, задание функции расстояния для всех пар точек, полностью описывает евклидову геометрию.
Замечу, что математики не пользуются логической перезагрузкой при описании евклидовой геометрии, потому что она не дает ничего нового. Просто евклидова геометрия описывается в другой форме, где основным и единственным базовым понятием является мировая функция. Перезагрузка только резко увеличивает возможность ее обобщения. Достаточно изменить мировую функцию, и получится новая геометрия. При обычном представлении евклидовой геометрии, когда имеется много базовых понятий, обобщение достигается модификацией базовых понятий. Эту модификацию надо производить согласованно, что превращает возможность обобщения в безумно сложную и практически нереализуемую процедуру.
После логической перезагрузки все определения и соотношения евклидовой геометрии разбиваются на два класса: (1) общегеометрические соотношения и (2) специальные соотношения евклидовой геометрии.
Общегеометрические соотношения это главным образом определения геометрических объектов и соотношений линейного векторного пространства (скалярное произведение, определение линейной зависимости векторов, определение эквивалентности (равенства) векторов и др.) Общегеметрические соотношения формулируются в терминах мировой функции и зависят от параметра (параметром является вид мировой функции). Построение общегеометрических соотношений в дискретной геометрии получается простым изменением евклидова значения параметра (вида мировой функции).
Специальные соотношения евклидовой геометрии тоже пишутся в терминах мировой функции, но они верны только для евклидовой геометрии и не могут использоваться в дискретной геометрии. Специальных соотношений четыре. Они определяют размерность геометрии, выбор системы координат, метрический тензор и непрерывность множества, на котором задана евклидова геометрия.
Евклидова геометрия в терминах мировой функции (в сигма-представлении) выглядит совсем иначе, чем в привычном векторном представлении. Например, в обычном представлении размерность есть просто натуральное число, которое задается в самом начале построения евклидовой геометрии. В сигма-представлении размерность определяется как максимальное число линейно независимых векторов. Оно может быть бесконечно большим в случае, когда размерность (как число координат, описывающих пространство) может быть конечной и небольшой. Другими словами, размерность, как число координат, описывающих точки пространства, и размерность как максимальное число линейно независимых векторов оказываются различными величинами. При традиционном описании евклидовой геометрии это случай даже не рассматривается.
В специальных соотношениях евклидовой геометрии параметр геометрии (вид мировой функции) оказывается зафиксированным. Мы можем выбрать вид мировой функции в явном виде
При этом все специальные соотношения евклидовой геометрии будут удовлетворены. Если теперь подставить выражение для мировой функции в выражение для скалярного произведения
векторов
То мы получим привычное выражение для скалярного произведения в евклидовой геометрии
После этого скалярное соотношение утратит свой общегеометрический вид. Теперь оно уже не может использоваться в дискретной геометрии.
Однако мы обычно используем скалярное произведение типа (3), которое не является общегеметрическим соотношением и не может быть использовано в дискретной геометрии. Использование общегеметрических соотношений позволяет строить дискретные геометрии и другие физические геометрии, не прибегая к евклидову методу дедукции геометрических соотношений из аксиом. При этом не имеет значения, является ли вновь построенная геометрия аксиоматрзируемой. Метод Евклида используется один раз для построения собственно евклидовой геометрии. Далее физические геометрии строятся методом деформации евклидовой геометрии (замена евклидовой мировой функции на новую мировую функцию во всех общегеометрических соотношениях.) Поскольку о существовании общегеометрических соотношений исследователи даже не подозревают, то следует соответствующая реакция на мои работы по геометрии.
Между тем расширение возможностей геометрии пространства-времени имеет колоссальные последствия в микромире и в ОТО.
Напоследок об общегеометрическом определении геометрических объектов. Со сферой все ясно. Тут проблем нет. Эллипсоид определяется заданием его фокусов
и точки
на его поверхности
Отрезок
прямой определяется как вырожденный эллипсоид, у которого точка на поверхности совпадает с одним из фокусов
В евклидовой геометрии
есть одномерный отрезок. В дискретной геометрии
, вообще говоря, одномерным отрезком не является. Это, вообще говоря, поверхность. Настаивать на одномерности
в любой геометрии оснований нет. То, что
является одномерным в евклидовой геометрии является ее специальным (а не общегеометрическим ) свойством.
Вот такие пироги. А Вы говорите, что я занимаюсь ерундой.