Вопрос, наверное, философский, но если найдется решение, то может стать и прикладным. Интерполяция применяется для функций, так? То есть набор придется разбить на пары и можно узнать зависимость этих пар между собой.
Набор этот - любые числа, впринципе, на первый взгляд никак между собой не связанные, требуется установить закон, в зависимости от которого они изменяются. Вот, например, первые 6 элементов последовательности (1,2,3,4,5,6 ... ) подчиняются закону
. Если немного изменить: (1,2,3,4,5,6,8,10,11,15,20,20,20 ... ), то все рушится и зависимость от номера уже так просто не определить. Но должна же эта зависимость быть вообще? Вот и смысл задачи в определении зависимости, по которой изменяются n членов любой последовательности.
Если пойти с самого начала, то самый первый вопрос: могу я вообще просто от балды написать некоторое количество чисел, например, таких: (1,4,6,10,11,18,32,43,53,99,100,101,102,103,115) и сказать, что это последовательность? Но ни рекурентной фомулы я не знаю, ни закона, знаю только 15 первых членов и желаю узнать по какому закону эти 15 членов зависят от номера, либо друг от друга.