2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 21:51 
Аватара пользователя


28/07/10
124
Помогите разобраться. Надо представить функцию, заданную графически интегралом Фурье (см. рис.).

Изображение

Если не ошибаюсь, то аналитически её можно записать так

\[f(x)=\left\{\!\begin{aligned}0,&\quad x\in\bigcup_{k\in\mathbb{Z}}\!\left(2k+\dfrac{1}{2},\,2k+\dfrac{3}{2}\right)\!,\\ 2,&\quad x\in\bigcup_{k\in\mathbb{Z}}\!\left(2k+\dfrac{3}{2},\,2k+\dfrac{5}{2}\right)\!.\end{aligned}\right.\[

Тогда, с учётом того, что функция \[f(x)\[ чётная, имеем

\[f(x)\sim\frac{2}{\pi}\int\limits_{0}^{+\infty}\Biggl(\int\limits_{0}^{+\infty}f(t)\cos\alpha t\,dt\Biggr)\cos\alpha x\,d\alpha\[
Но проблема в том, что интеграл \[\int\limits_{0}^{+\infty}f(t)\cos\alpha t\,dt= 2\int\limits_{0}^{1/2}\cos\alpha t\,dt+2\sum_{n=0}^{\infty}\int\limits_{2n+\tfrac{3}{2}}^{2n+\tfrac{5}{2}}\cos\alpha t\,dt\[ равен нулю.
Не догоняю, что не учёл, где ошибка?

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 22:17 
Модератор
Аватара пользователя


16/02/11
3788
Бурашево
Имею предположение, что в задаче требуется представить функцию рядом Фурье.

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 22:21 
Аватара пользователя


28/07/10
124
profrotter

Нет, именно интегралом Фурье. Буквально: "Представить функцию, заданную графически, интегралом Фурье в комплексной и действительной формах".

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 22:29 
Модератор
Аватара пользователя


16/02/11
3788
Бурашево
Писал я недавно в сообщении #487995 о преобразовании Фурье периодической функции. Посмотрите - может поможет.

-- Сб окт 01, 2011 23:30:39 --

Кстати, интеграл Фурье в этом случае всё-равно преобразуется в ряд.

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 22:31 
Аватара пользователя


28/07/10
124
profrotter
Спасибо, но теории и так хватает.

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 22:41 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
У Вас периодическая функция. Так нельзя.

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение01.10.2011, 23:03 
Аватара пользователя


28/07/10
124
А поконкретней, что именно нельзя, на каком этапе ошибка??

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение02.10.2011, 00:37 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
На этапе постановки задачи, как profrotter предлагал. (Или как-то иначе.)

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение02.10.2011, 10:56 
Аватара пользователя


28/07/10
124
А разве преобразования Фурье для этой функции невозможно в пространстве обобщённых функций?

 Профиль  
                  
 
 Re: Представление функции, заданной графически, интегралом Фурье
Сообщение02.10.2011, 11:16 
Заслуженный участник


11/05/08
32166
Разложите её именно в ряд Фурье:

$f(x)=\sum\limits_{k=-\infty}^{+\infty}c_ke^{ikx}=\int\limits_{-\infty}^{+\infty}dp\left(\sum\limits_{k=-\infty}^{+\infty}c_k\delta(p-k)\right)e^{ipx}.$

Выражение в скобках -- это и есть значение интеграла Фурье. Со всяким там пропущенными константами и знаками сами разберитесь.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group