Пространство Гильберта это "пучки" функций
Вероятно, какие-то пучки (совокупности пучков?) и несут структуру гильбертова пространства... Но не всякие. А если гильбертово пространство -- то норма есть, соответственно -- метрика. Можно поконкретней (если Вам это нужно)?
Я не совсем понял вопрос. Но попробую.
Пусть функция
- вектор пространства
. А функция
- очень хитрая: она везде равна 0, но в нуле равна 1. Такая вот "обрезанная", прости Господи, дельта-функция. Очевидно, что
. Поэтому метрика между функциями
и
тоже нулевая. Но... Но ведь это разные функции!!! А метрика может быть равной нулю только в том случае, если она находится для одной и той же функции. Такое я помню у нее определение в линейной алгебре...
-- Пн июл 04, 2011 20:57:47 --Одно из возможных объяснений - это путаница с терминами. Если рассматривается гильбертово пространство функций интегрируемых с квадратом, то в качестве элементов пространства берутся классы эквивалентности функций, различающихся на множестве меры нуль. Если заменить слово "пучки" на эти классы, то ответ становится осмысленным.
Вот так-то оно так, но как-то криво получается. Знаете, типа, дельта-функция не интегрируема, но интеграл Фурье для нее существует... Не чувствуете некоторую двусмысленность? Зачем мне классы-то? Мне классы без надобности. В этом классе нет понятия значения функции в какой-то точке. Там полный бардак с мгновенными значениями.... :(