В седьмом томе Большого академического словаря русского языка слово «интерпретация» описано как «истолкование, разъяснение смысла, значения чего-л.» (стр. 329).
Понадобилось мне лезть в этот словарь потому, что в математической логике дается определение термина «интерпретация» а как быть, если я хочу использовать слово «интерпретация» не в смысле этого определения мне не было ясно. Поэтому я пришёл к компромиссному решению: в этом случае я буду писать «истолкование (интерпретация)». Теперь к делу.
«Формулы имеют смысл только тогда, когда имеется какая-нибудь интерпретация входящих в нее символов. Под
интерпретацией мы будем понимать всякую систему, состоящую из непустого множества

называемого
областью интерпретации, и какого-либо соответствия, относящего каждой предикатной букве

некоторое
n-местное отношение в

каждой функциональной букве

— некоторую
n-местную операцию в

(т. е. функцию, отображающую

в

) и каждой предметной постоянной

— некоторый элемент из

» Страница 57.
И хотя первая и вторая фразы этого текста в пятом издании разделены разными разностями, но все равно меня этот текст удивляет. Вторая фраза дает определение интерпретации, и получается, что без, скажем, области интерпретации и разговаривать не о чем. Но вернем в первой фразе обычный смысл слову «интерпретация»: Формулы имеют смысл только тогда, когда имеется какое-нибудь
истолкование (интерпретация) входящих в нее символов. Разве обязательно истолковывать эту фразу только в смысле определения данного дальше? Очевидно, что нет.
«... для логики предикатов синтаксический метод теорий первого порядка равносилен семантическому методу, использующему понятия интерпретации, модели, логической общезначимости и т. п.» Страница 79.
Вот теперь всё на своих местах. Определение интерпретации имеет смысл только для семантического метода. А при применении синтаксического метода теорий первого порядка нужно только истолкование (интерпретация) сигнатуры. Жить только с синтаксическим методом, конечно, не очень удобно (и это мягко сказано), но речь-то идет о принципе.