Sashamandra писал(а):
SomeoneSomeone писал(а):
Она точно так же не возникает и в других случаях, так как мы имеем полную свободу упоминать любые объекты столько раз, сколько нам потребуется.
Мне опять приходится цитировать себя.
Для функций эта процедура не проходит: мы должны складывать не имена, а объекты. А объекты универсума нам не так подвластны, как их имена.
Алфавит и входящие в него символы также являются объектами некоторой теории, средствами которой описывается язык изучаемой теории. В частности, имена объектов сами являются объектами некоторой теории. Почему объекты одной теории мы можем размножать произвольным образом, как захотим, а объекты другой - не можем?
Я пока не решил, кто Вы такой. То ли любитель, желающий подправить профессионалов, то ли профессионал, валяющий дурака перед людьми, у которых и без того достаточно работы.
В первом случае я могу предположить, что Вы в какой-то популярной литературе вычитали аналогию: функция двух переменных - это некое механическое устройство с двумя входными отверстиями, куда нужно бросить исходные объекты (аргументы функции), и одним выходным, откуда вываливается результат. Берём такую машину для сложения натуральных чисел. Изымаем из натурального ряда единицу и двойку, кидаем их во входные отверстия, машина перерабатывает единицу и двойку в четвёрку и выкидывает эту четвёрку в выходное отверстие. Почему четвёрку? Шестерёнки износились от чрезмерной эксплуатации. В итоге у нас остаётся натуральный ряд без единицы и двойки, но с двумя четвёрками.
Какое это имеет отношение к математике и сложению натуральных чисел? Абсолютно никакого. Натуральные числа не существуют в том смысле, в каком существуют, например, яблоки. Свойства яблок не имеют никакого отношения к натуральным числам. Функция - это не машина по переработке одних объектов в другие, а просто соответствие: если первый аргумент функции соответствует объекту
, второй - объекту
, то результат соответствует объекту
. Нет никаких оснований утверждать, что аргументы функции (и её результат) не могут соответствовать одному и тому же объекту, сколько бы этих аргументов ни было.
Если же Вы профессионал, то Вы это сами должны понимать, и тогда Вы валяете дурака, отнимая у нас время по пустому поводу. Если Вам больше нечем заняться, загляните в раздел "Помогите решить / разобраться" и кому-нибудь объясните, как решать задачу, по возможности не решая за него. Это несколько сложнее, чем кажется.
Я уже писал, что разрешить подобные псевдопроблемы так, чтобы удовлетворить автора вопроса, практически невозможно, особенно если автор имеет в виду какое-то своё решение. Прежде всего, потому, что неизвестно, что он хочет услышать (а часто он и сам не понимает, чего хочет). Давайте эту дурацкую дискуссию закончим, и Вы изложите нам своё решение.
Sashamandra писал(а):
Someone писал(а):
Причём здесь вообще изоморфизм?
Чтобы показать, что с математической точки зрения одноместные и многоместные функции - принципиально разные математические объекты.
Вы об изоморфизме
чего говорите? Мы обсуждали выразительные возможности формализованной теории. Вы
утверждали, что теория с многоместными функциями имеет бóльшие выразительные возможности, чем с одноместными. Покажите, пожалуйста, что это действительно так, то есть, что без многоместных функций принципиально нельзя обойтись.
Sashamandra писал(а):
Brukvalub писал(а):
Почему мы должны предполагать, что каждый объект существует в единственном экземпляре?
Я как раз этого не требую. Посмотрите, пожалуйста, название темы дискуссии. Напротив, если предположить, что единиц (не имен, а тождественных объектов) бесконечно много, тогда моя проблема решается.
Возникают проблемы с интерпретацией равенства. Равенство
означает, что
и
- один и тот же объект. У Вас же это нарушается: Ваши "тождественные" объекты - это разные объекты. Вы ведь прямо постулируете, что эти "тождественные" объекты используются не все сразу, а в необходимом количестве: один, два,... Поэтому мы можем определить функцию, которая на разных "тождественных" объектах будет принимать отнюдь не "тождественные" значения.
Возникают проблемы с теорией множеств. Для построения чего-нибудь может потребоваться произвольно большое множество "тождественных" объектов. В результате очень легко могут вылезти всякие парадоксы. Во всяком случае, совокупность объектов, "тождественных" числу
, не может быть множеством.