С использованием ОТО - можно и саму энергию. Разные значения энергии по-разному гравитируют.
Утонем.
В 4-импульсе энергия однозначной положена от балды, тем же способом она однозначная в тензоре энергии-импульса, от которого уже зависит гравполе.
Если мы сидим в среде (вакууме), то измеряем гравитацию относительно гравитации этой среды, то есть от разности энергий поле зависит; это ещё без тягомутного вопроса что здесь называть системой отсчёта.
Нельзя, чтобы энергия не была однозначной: 4-вектора тогда из энергии и импульса не составишь.
Это широко известный в узких кругах анекдот об однозначности энергии в релятивистской физике: энергия неоднозначна в том смысле, что не существует эталона энергии (только разность энергий можно измерить), но тогда не выходит построить мир Минковского (динамику в пространстве-времени), потому что 4-импульс тогда не есть 4-вектор.
С другой стороны, мир Минковского прекрасно описывает экспериментальные данные, то есть формулы всяко у нас правильные.
Это значит, что просто есть небольшая непонятка того, как именно эти формулы связаны с реальностью, но "небольшая" не значит "простая".
Модуль 4-вектора измерить нельзя: нет эталона для интервала, только для длины и времени по-отдельности есть эталоны.
Сам Минковский думал, что пространство-время существует на тех же правах, как и обычное пространство, но ему сразу сказали: "Предъявите эталон интервала, пожалуйста", и он умолк.
Но и противники не смогли ничего умного возразить: результаты расчётов по формулам отлично совпадают с экспериментом.
Подобных мест в физике много (самых ярких десятки, не меньше).
Это не значит, конечно, что современная физика -- это лжеучение (эх, щас набегут альтернативщики): так и должно быть в любой науке, всегда так было и всегда будет; но студенты ждут от учебников прописных истин, а не тонких мест, и печально, что эту их страсть не отбивают у них преподы.
Вот, например, есть такое тонкое место, непосредственно связанное с анекдотом об однозначности энергии: импульс однородного элмагполя.
Если есть не ортогональные элполе и магполе (а ортогональны они только в волне могут быть), но однородные, то импульс поля не равен нулю.
Мандельштам в своих лекциях секрет давно раскрыл: интегрировать вектор Пойнтинга нужно только по замкнутой поверхности, тогда он тут нуль, естественно.
Мандельштам просто понимал прекрасно, как именно физически прибором импульс и энергия измеряются: измеряются всегда только разность энергии и всегда только изменение импульса (как вектора) и никогда их абсолютные значения -- нет эталона.
Мы измеряем поток разности энергий а не самой энергии.
Но сколько не ищите, не найдёте это важное пояснение Мандельштама в учебниках.
Да просто потому, что оно то и утверждает, что энергия определена неоднозначно, а так нельзя, 4-вектора тогда не составишь.
Между прочим, помню, когда нас учили электродинамике, препод обратил наше внимание на эту проблему именно так, как нужно было это сделать.
Жаль, только, что ниши умишки тогда были настроены именно исключительно на запоминание того, как правильно, и факт, что что-то в науке пока неясно, воспринимался как нонсенс.
Ещё я заметил, что стихийные позитивисты не знают, что это разновидность идеализма
А я и не в курсе. Поясните?
Если у Вас нет чесотки от "буржуазная наука", то БСЭ очень неплохой, кстати источник по таким вопросам:
http://bse.sci-lib.com/article081146.html-- 24 фев 2011 19:51 --Эх, не идёт у нас как-то с дифференциалами-то.
Голосованием решили их оставить.
Против принципа Чингачгука и того, что преподы вынуждены решать педзадачи, вроде, возражений тоже нет.
Второй дифференциал остался.
Если почитать упомянутый здесь учебник Картана, то выходит, что второго дифференциала как бы и нет.
Но мы все при этом умеем его считать, что даёт яркий пример сложности проблемы существования.
Высказывалось, что, дескать, он "не инвариантен".
Ещё я обратил внимание на то, что старое определение дифференциала не совпадает с его новым определением (именно поэтому и второй дифференциал выпадает).
Как быть?
Как в том фильме? -- страдать?
Можно развить и тему дифференциала в физике, если хотите, но ведь это в сторону?
Вот, теперь математики пишут так:
или
.
На взгляд физиков это безграмотно, потому что писать можно только так:
или
.
Математики скажут: "А не всегда существует такая функция
".
А физики ответят: "А нам это ультрафиолетово, потому что мы никогда не делаем так, как нам хочется, а только так, как есть на самом деле. Справа стоит физически бесконечно малая величина, тогда и слева должен стоять дифференциал и это нужно указать буквой d".
Физики всегда интегрируют (измеряя) по некоторому заданному контуру.
Полный дифференциал означает только то, что интеграл от пути интегрирования не будет зависеть.
При этом слова "физически бесконечно малое" обозначают реальный факт, который виден на стрелке прибора и, действительно, нельзя никак бесконечно малое приравнять к конечному; значит, нужно ставить
.