По-моему, не стоит путать комплексные числа как абстракнтый мат. аппарат, удобный для различных представлений (тех же гармоник и т.п.), с комплексными числами как алгебраической системой, явившейся алгебраическим расширением вещественных чисел в силу потребности практики, а значит, по идее, несущей в себе некий "отпечаток реальности". Вопрос - в чем этот отпечаток. Конечно, в тех физических задачах, где комплексные числа используются только как удобный мат. инструмент (в той же теории Жуковского, упоминавшейся выше, или в гармоническом анализе сигналов), никаких проблем с обоснованием полученных с их помощью результатов нет - тут комплексные числа - лишь представление. А вот в задачах, в которых в процессе решения спонтанно возникает потребность выхода за пределы вещественных чисел - вот тут и проявляется вся "суть" комплексных чисел, которая позволяет вам выйти, а потом, вернувшись назад, быть убежденными что полученный результат все так же имеет отношение к реальности. И хотелось бы эту суть "ухватить".
Наверно во всем эффективном есть своя красота.
И да, например, есть проблема - вышел в параллельный Мир и оттуда всё решил и вернулся с успехом.
Например, прямая задача линейного программирования тяжела в решении, а двойственная до безобразия проста: вышел в параллельный мир, так сказать.
Вспомнить ещё кватернионы при моделировании 4-хмерностей и которые на практике используются в компьютерной графике.
Вспомнить про физику элементарных частиц - сперва вычисляют частицу, а потом её обнаруживают, причем вычисляют в моделях, где
"реально" предполагают существование 11-мерных Миров.
Красота - страшная сила.