2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 02:13 
Заслуженный участник
Аватара пользователя


03/02/10
1928
Утундрий в сообщении #398580 писал(а):
а тоже ведь вариант...

ну разумеется... ведь Ваши матрицы -- это производные обычных и гиперболических вращений в разных плоскостях...

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 11:15 


20/12/09
1527
Исходная структура - 6-мерное линейное пространство, есть замкнутость только по сложению и умножению на число.
Матричное умножение выводит за его пределы.
Разумно искать внутри этого пространства подпространство - алгебру, замкнутую относительно умножения.

Но вряд ли возникнет какой-нибудь новый интересный алгебраический объект. Могут быть разве что кватернионы.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 11:23 
Заслуженный участник
Аватара пользователя


03/02/10
1928
Ales в сообщении #398692 писал(а):
Матричное умножение выводит за его пределы.

коммутаторы не выводят:)

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 11:44 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Посчитал. Преобразованием от тех шести (но по три) к тем четырем (но по пять!) да плюс еще две (комплексно сопрягающие столбик), табличка умножения разваливается на две тройки. Как оно там по-вумному, прямая сумма (или произведение?) что ли? Видимо в энтом смысел стратегии.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 11:44 


20/12/09
1527
paha в сообщении #398694 писал(а):
Ales в сообщении #398692 писал(а):
Матричное умножение выводит за его пределы.

коммутаторы не выводят:)

Значит это 6-мерная алгебра Ли.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 12:06 
Заслуженный участник
Аватара пользователя


03/02/10
1928
Утундрий в сообщении #398700 писал(а):
табличка умножения разваливается на две тройки. Как оно там по-вумному

Ну так поделитесь: типа $[A_i,A_j]=...$ всего-то 15 равенств:)

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение12.01.2011, 12:23 
Заслуженный участник


13/12/05
4620
Утундрий в сообщении #398508 писал(а):
paha в сообщении #398488 писал(а):
Комплексная структура на линейном пространстве

Звучит внушительно, благодарю Вас :D

А на кватернионы сие обобщается? А то насторожили меня эти матрицы Паули и попытался я из восэм-на-восэм похожей редукцией матрицы Дирака получить, да только что-то в волнах ничего не видно.

Обобщается. Чтобы задать на действительном векторном пространстве структуру кватернионного векторного пространства, надо задать три оператора $I,J,K$, такие, что $I^2=J^2=K^2=-\mathrm{id}$, $IJ=-JI=K$, ... ну и так далее.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение13.01.2011, 00:18 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
paha
Поделюсь. Но ближайшие пару дней я в режиме созерцания. Потом планирую часиков на шесть перейти к активным действиям (очень любопытна получившаяся симметрия, намекающая, что редукцию к комплекснозначным столбикам здесь можно ввести не одним, а двумя способами), после чего и отпишусь.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение13.01.2011, 00:42 
Заслуженный участник
Аватара пользователя


03/02/10
1928
Утундрий в сообщении #399070 писал(а):
что редукцию к комплекснозначным столбикам здесь можно ввести не одним, а двумя способами)

лишь бы коммутировали с такой матрицей $J$, что $J^2=-E$

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение13.01.2011, 20:28 
Заслуженный участник


14/12/06
881
Утундрий в сообщении #398562 писал(а):
paha, ссылка слишком сложна для моего понимания, увы.

Там зашифровано.
Могу расшифровать, если хотите.

Гаусс придумал геометрическую интерпретацию комплексных чисел, подобную оной для вещественных -- комплексную плоскость, подобно вещественной прямой.
Получилось соответствие между вещественной плоскостью и комплексной прямой.
До этих идей Гаусса комплексные числа считались чем-то таинственным, а так они стали наглядными.
Соответственно, n-мерное комплексное арифметическое пространство (множество наборов из n комплексных чисел) соответствует 2n-мерному вещественному арифметическому пространству.

А можно взять n-мерное линейное векторное пространство, но разрешить умножать векторы на комплексные числа, а не только на вещественные, как обычно.
Тогда координатное пространство будет n-мерным арифметическим комплексным пространством.

Оператор $J$ тут -- это просто операция умножения на $i$.
То есть, другими словами, если мы хотим некое 2n-мерное линейное пространство сопоставить n-мерному арифметическому комплексному пространству, то должны, разумеется, ввести операцию умножения комплексных чисел.
Так вот в $J$ зашифрована эта операция умножения векторов 2n-мерного вещественного пространства по правилу умножения комплексных чисел.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение21.01.2011, 12:01 
Заслуженный участник
Аватара пользователя


30/10/10
1481
Ереван(3-й участок)
Я тут развлекался с Райдером. Сразу напомнило. Утундрий
посмотрите стр.52 Райдер,"Квантовая теория поля". Матрицы не совпадают, но возникают ассоциации. Может у Вас это не $so(1,3)$, а, например $so(2,2)$ или типа того.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение21.01.2011, 20:20 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Я пока ничего нового писать не буду, как собирался. Ибо читаю про группы Ли...

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение09.02.2011, 21:11 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Ну хорошо. Готов признать - алгебры Ли (групп пока даже не касаюсь) - весьма развитая поверхность наука. Но, ёжкин кот! Столько словов и все не по делу! Ну вот дают вам функцию и просют построить ея график. Дык, все понятно: интервалы там, производные всякие, точки Максима и Перегибова и вуаля. А с алгеброй чевой делать-то? Ну все ж уже дано: и коммутаторы (а комму - ляторы), и метрика Киллинга... казалось бы - впотребляй и радовайся. Только... где алгоритмы? Алгоритмы где? Вот допетрил я методом Тыкова до сорокапятиградусного проворота, после коего - таки да - очевидно разбиение в прямую сумму двух некоммутативных идеалов. А ежели б не?

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение09.02.2011, 21:50 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Есть книжки по группам и алгебрам Ли "для практиков" - для физиков. Правда, я сам в них особо не ориентируюсь, так что не порекомендую. Но искать можно.

-- 09.02.2011 22:00:54 --

А, вот, в соседней теме порекомендовали Georgi и Cahn.

 Профиль  
                  
 
 Re: Есть ли в энтом Математика?
Сообщение10.02.2011, 00:00 
Заслуженный участник
Аватара пользователя


30/10/10
1481
Ереван(3-й участок)
Утундрий в сообщении #411152 писал(а):
А ежели б не?

А ежели б не, то махали бы руками с какой-нибудь теоремой о существовании))))

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 30 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group