Цитата:
А с какой целью Вы собираетесь изучать математику?
Сложно объяснить, но я попробую, хотя причины, наверное, как минимум странные... Мне нравятся математические идеи (я их знаю хоть и несколько, но очень нравятся). Нравятся теории (но с пониманием как можно применить 'руками'). Нравится высокий уровень абстракции. Хочется, чтобы я мог открыть Бурбаки и понимать написанное. Просто хочется. Не знаю почему. Нравятся формулы, когда написаны, даже о то, как выглядят. Нравится даже как математики говорят... Даже как выглядят... Наверное это ерунда... Особенно нравится, что математика для меня сложная.
Может, я плохо выразил свои причины или сам не осознаю истинную, которая влечёт меня к математике, но, может, они и не 'стоят' того, чтобы изучать математику?
Подобные темы на форуме (вроде 'с чего начать', 'какие учебники', 'как образовываться' и т.д.) прочитал, кажется, все. Было интересно
-- Чт дек 16, 2010 21:40:47 --Цитата:
Возможно, в этом случае стоит спуститься на "более начальный" уровень, почитать более простые учебники или популярное изложение.
Наверное. Но как? Я слушал матан, вышку, линейку, дифуры, матфиз и изучал всё это, но плохо. И в школе, на самом-то деле, плохо понимал математику. Да и учил плохо. Но выделить те моменты, которые я 'пропустил' мне тяжеловато. То есть, можно, наверное... Но не открывать же мне школьный учебник? Или открывать? Ну, вроде все понятно... Не знаю как проверить. Из ЕГЭ часть Б почти всю решаю быстро. Всякие Ткачуки-Сканави все что ли примеры прорешивать? Конечно, я оттуда не все могу решить. Но не решать же их все подряд? Или добиваться, чтобы мог решить самые сложные?
Популярные изложения я люблю. Но их не много, всё-таки. Да и часто мне не очень хорошо от упрощений излишних или детского тона. Может, зря это я? Какие популярные Вы имеете в виду, можете, пожалуйста, сказать?
-- Чт дек 16, 2010 21:46:10 --Цитата:
Часто учебники алгебры, аназиза или дискретной математики в первых главах дают тот необходимый минимум работы с множествами, который нужен.
Да, этот минимум я знаю. Но из него сразу же возникают вопросы,ответы на которые я не знаю, а без ответов мне кажется, что и не понимаю до конца и полностью. Ну и интересно было же теорию множеств посмотреть, о чём она и какая. А то из этого минимума представление, что теория множеств и состоит из сложения да вычитания множеств, да ещё этих картинок (круги Эйлера)
.
-- Чт дек 16, 2010 21:51:56 --Цитата:
Тут можно посоветовать не до конца залезать в основы, а до того момента, когда сможете нормально оперировать с теми множествами, которые нужны.
Не очень-то мне удаётся такие моменты 'ловить'. Ну, пример с множествами - тут да, легко ещё. Ну а всякие пределы, сходимости, ряды уводят же и в теорию пределов из матана, и в теорию чисел и т.д. и проч.
-- Чт дек 16, 2010 22:11:48 --Цитата:
Да. Попеременно.
Ну, это удобно только если есть 'спаренные' учебник и к нему задачник. Обычно тех примеров или упражнений, что в учебниках (где в основном теория) не хватает чтобы решать всевозможные задачи по этой теме. Например, Зорич - можно ли читать его (и только его) и всё понимать после прочтения + мочь решить задачи из задачников? Наверное, зависит от человека. Но мне, кажется, маловато