Кажется, у нас у же был подобный товарищ
Цитата:
http://kamlia-ferma.narod.ru/ferma.doc Стр.61
...и тогда

(12)
Из последнего очевидно

, а решения для

имеют форму .

которому все долго и безрезультатно пытались доказать, что это неверно.
Вообще, уже после формулировки
Теоремы1, работу можно возвращать автору на доработку, ибо в такой формулировке эта теорема не верна. То же и с
Теоремой1А. Причём, доказательства каждой растянуты на целую страницу, притом что доказываются они буквально в одну строчку.
Далее, оказывается, что всё, что изложено по 57-ю страницу, к доказательству, практически отношения не имеет. (Автор весьма неумело и с ошибками часто излагает вещи до того элементарные, что не во всех книжках по основам теории чисел их и приводят). А само доказательство сразу оборачивается перлом, изложенным в начале этого поста, который не раз используется в доказательстве автора.
Это смутно мне напоминает
индо-пакистанский орловский инцидент с доказательством БТФ одним профессором. Автор также успел дать ряд интервью, но успел даже и выпустить книжку, обойдя тем самым неповоротливого орловского автора.