Утундрий, хотя Вы меня тут слегка сбили с пути истинного (ибо я изначально вовсе не намеревался провозглашать, что решение антиколлапсар/коллапсар и решение для вечной чёрной дыры полностью эквивалентны топологически, а просто указывал на некую их схожесть в области, доступной наблюдению, - на что есть теорема Биркхофа), я хочу Вам сказать пару слов о полезности в хозяйстве таких предметов, как ножницы и клей.
А именно, полезность сих предметов в данном случае заключается в том, что они позволяют нам перейти от рождённого в фантазиях идеализированного решения для вечной чёрной дыры к более приближенному к реальности случаю. То бишь, если мы возьмём, да разрежем решение Крускала-Секереша по линии
, а потом скажем, что слева находится центрально-симметричное отображение правой области (без всяких инверсий времени!), то, насколько я понимаю:
1) Преобразования Лоренца, конечно же, перестанут отображать данное решение в себя. То есть у нас появится выделенная СО (это та СО, в которой шов неподвижен).
2) Нельзя будет сказать, что на шве мы имеем решение для пустого пространства.
3) К удивлению Шварцшильда, момент
по Шварцшильдовской координате окажется выделенным, что плохо сочетается с изначальной статичностью решения. Однако:
4) пп. 1 и 2 свидетельствуют лишь о том, что в месте шва расположена коллапсирующая материя (предельный случай сферы, не вылетающей из-под горизонта).
5) п. 3 также объясним с той точки зрения, что момент
по Шварцшильдовской координате действительно является выделенным - это тот самый момент, когда вылетевшая из антиколлапсара материя достигла высшей точки, перед тем, как начать коллапсировать.
6) Диаграммы Пенроуза для этой задачи и для пустого сферически-симметричного пространства будет не отличить. Хотя решения, конечно же, разные: От первого ко второму есть переход, хотя и достаточно нетривиальный.