2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Сходимость ряда
Сообщение13.10.2010, 20:19 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Ну, я практически то же самое и сказал, только ограничился действительной частью.

 Профиль  
                  
 
 Re: Сходимость ряда
Сообщение13.10.2010, 20:34 
Заслуженный участник


04/05/09
4589
Padawan в сообщении #361762 писал(а):
venco в сообщении #361745 писал(а):
ИСН в сообщении #361742 писал(а):
Это был туманно описанный пример, а вот прямой: $\sum{\cos{2\pi n\over 3}\over\sqrt[10]n}$
Этого недостаточно. Ваш ряд сходится и в кубе.

Расходится, пример правильный. $\cos^3\alpha=\frac 34\cos\alpha+\frac{1}4\cos 3\alpha$.
Получается $\left(\dfrac{\cos{\frac{2\pi n}{3}}}{\sqrt[10]{n}}\right)^3=\dfrac 34\dfrac{\cos\frac{2\pi n}{3}}{n^\frac{3}{10}}+\dfrac{1}{4}\dfrac{1}{n^{\frac {3}{10}}}$
Действительно, расходится, я ошибся.

 Профиль  
                  
 
 Re: Сходимость ряда
Сообщение13.10.2010, 20:56 
Заслуженный участник
Аватара пользователя


14/02/07
2648
Я люблю оставить простор для воображения.

Но раз начали обвинять в туманности, скажу так: $-(2k+1)^{-1/100}$ надо разбить на $[\sqrt{k}]$ (или чуточку меньше) равных кусков.

 Профиль  
                  
 
 Re: Сходимость ряда
Сообщение13.10.2010, 21:31 


19/10/09
77
Спасибо всем Вам за помощь.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 19 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group