Плохо, что там не доказано (даже не сказано!), что интеграл единственнен. Может у функции может быть несколько интегралов.
Вполне может, и об этом явно сказано (упражнение 4). Такие (в частности) функции называются неинтегрируемыми. Так что с этим всё в порядке. Это не значит, что в статье нет недостатков, их хватает. Скажем, довольно нелепо оформлено обоснование линейности. Совсем плохо то, что ничего не сказано про существование максимумов и минимумов, а из-за этого -- проблемы с доказательством интегрируемости монотонных функций (которая, кстати, и не доказывается -- возможно, именно поэтому).
Но речь-то ведь не об этом. Был задан вопрос, как вводил интеграл М.И.Башмаков. Ну так вот ровно так он его детишкам и вводил, с точностью до нюансов. Один из таких нюансов -- что проблемы с минимумами и максимумами, скорее всего, отсутствовали, поскольку понятия супремума и инфимума в его курсе всё-таки были (а в этой статье они были бы неуместны, т.е. не уместились бы).
Причина такого подхода, как мне кажется, вот в чём. Школа была физико-математической, поэтому М.И. старался вводить базовые понятия максимально строго и при этом лаконично -- так, чтобы уместиться в отведённые часы. Аккуратное изложение теории пределов, тем более такого специфического вида предала, как при определении интеграла, в эти часы категорически не умещалось. А так -- всё получилось довольно коротко и элегантно. Правда, настолько абстрактно, что действительно мало кто понимал.
-- Чт сен 02, 2010 18:33:28 --На рядах Тейлора.Это на первый взгляд ... но может и на чем-то большем.
Не так быстро.
Какие ещё ряды Тейлора, когда нет понятия предела?... А если он всё же есть, то -- зачем?...