2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 Определение производной без использования понятия предела.
Сообщение23.08.2010, 18:01 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Рассмотрим пример: $y=x^2$. Приращение функции $\Delta y=(2x+\Delta x) \Delta x$.
Сомножитель $(2x+\Delta x)$ при $\Delta x=0$ и есть хорошо знакомая всем производная $2x$.

Теперь, рассмотрим общий случай.

$y=f(x)$. Приращение функции $\Delta y={{\frac{f(x+\Delta x)-\Delta f(x)}{\Delta x}}{\Delta x}$. Фиксируем $x$. Если функцию $y={{\frac{f(x+\Delta x)-\Delta f(x)}{\Delta x}}$ можно доопределить при ${\Delta x}=0$ так, что эта доопределенная функция непрерывна в некотором открытом интервале, содержащем ноль, то значение этой доопределенной функции при ${\Delta x}=0$ и будет производной функции $y=f(x)$ в точке $x$.

Если я нигде не наврал (что совсем не исключено), то возникает вопрос кому вся эта штука нужна? В мат. анализе хорошо известна цепочка понятий: предел функции в точке, непрерывность функции в точке, производная функции в точке. Но непрерывность функции (как в точке, так и на множестве) можно определить, не прибегая к понятию предела, с помощью открытых множеств. Именно этот факт и заставил меня задуматься о возможности определение производной без использования понятия предела. Если я прав, то понятие производной в точке можно свести к непрерывности некоторой функции в некотором открытом интервале, содержащем ноль.

В Петербурге живет математик Марк Иванович Башмаков. Как мне сказали, лет десять тому назад он опубликовал работу об определении производной и интеграла без использования понятия предела. Ссылочку бы получить. Помогите!

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 18:11 
Экс-модератор


17/06/06
5004
Ну то есть, грубо говоря, Вы просто заменили выражение "$\lim\limits_{x\to x_0}f(x)=y_0$" на его определение через понятие "непрерывность": "при доопределении $f(x_0)=y_0$" функция $f$ становится непрерывной в $x_0$".

А производные тут ни при чем, они --- лишь примеры применения такой замены.

Похоже?

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 18:18 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Конечно, похоже. Но учитывая, что функция называется непрерывной, если полный прообраз каждого открытого множества открыт, можно вообще не знать, что такое предел (только не надо путать при этом "можно" с "целесообразно").

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 18:27 
Заслуженный участник


13/12/05
4620
Теорема. Функция $f(x)$ дифференцируема в точке $x_0$ тогда и только тогда, когда в некоторой окрестности $x_0$ выполнено $f(x)-f(x_0)=D(x)\cdot (x-x_0)$, где функция $D(x)$ непрерывна в точке $x_0$. При этом $D(x_0)=f'(x_0)$.

Несмотря на тривиальность утверждения, с его помощью очень просто доказываются все правила дифференцирования. У нас в лекциях по мат. анализу такой подход у профессора был.

Кстати, где-то я читал, что то, что Вы сделали с $x^2$, делал Ферма.

Интересно, а как интеграл-то без предела определить?

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 18:35 
Заслуженный участник
Аватара пользователя


04/04/09
1351

(Оффтоп)

Единственное замечание к Вашему симпатичному комментарию, что я не участвую в попытках доказать великую теорему Ферма (шутка).


-- Пн авг 23, 2010 11:48:32 --

Padawan в сообщении #346520 писал(а):
Интересно, а как интеграл-то без предела определить?

Так вот я же и прошу помощи найти работы Башмакова.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 21:14 


21/07/10
555
Padawan в сообщении #346520 писал(а):
Теорема. Функция $f(x)$ дифференцируема в точке $x_0$ тогда и только тогда, когда в некоторой окрестности $x_0$ выполнено $f(x)-f(x_0)=D(x)\cdot (x-x_0)$, где функция $D(x)$ непрерывна в точке $x_0$. При этом $D(x_0)=f'(x_0)$.

Несмотря на тривиальность утверждения, с его помощью очень просто доказываются все правила дифференцирования. У нас в лекциях по мат. анализу такой подход у профессора был.

Кстати, где-то я читал, что то, что Вы сделали с $x^2$, делал Ферма.

Интересно, а как интеграл-то без предела определить?


А непрерывность Вы как определять будете?
По-моему, при любом подходе эта деятельность будет близкородственна к определению предела.

И, самое главное, чем плохо определение предела?

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 21:41 
Заслуженный участник
Аватара пользователя


04/04/09
1351
alex1910 в сообщении #346571 писал(а):

А непрерывность Вы как определять будете?

Определение.
Функция называется непрерывной, если полный прообраз каждого открытого множества открыт.

Можно вообще не знать, что такое предел.

alex1910 в сообщении #346571 писал(а):

По-моему, при любом подходе эта деятельность будет близкородственна к определению предела.

Предел и открытые множества – два различных подхода к одному и тому же понятию непрерывности.

alex1910 в сообщении #346571 писал(а):

И, самое главное, чем плохо определение предела?

А кто сказал плохо? Просто разные подходы. Производная это некоторое число для функции в некоторой точке. Со стороны предела это требование существования некоторого предела, а с топологической стороны требование существования некоторой функции непрерывной в некотором открытом интервале содержащем ноль.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 22:19 


21/07/10
555
Вы всерьез полагаете, что я не знаю, что такое непрерывная функция? :)

Если ограничиться евклидовым пространством, то вполне достаточно использовать не все открытые множества, а только шары, и их конечные пересечения - для начинающего наглядней и проще будет (а профессионалы и так прекрасно знакомы с азами анализа).

Использование открытых множеств вместо епсилон-дельта техники - это просто немного другой язык, суть от этого не меняется. Так что об "ином подходе" вряд ли возможно говорить.

-- Пн авг 23, 2010 23:23:39 --

Не говоря уже о том, что смысл предела функции и непрерывности более прозрачен в стандартном изложении, чем при формальном определении о прообразах. То есть вряд ли стоит использовать это определение до тех пор, пока человек не разобрался, что к чему.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 22:37 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Это называется подмена тезиса. В Вашем предыдущем комментарии не было ни одного слова о преподавании. Прочтите то, что Вы же и написали. Я не давал советов как и что преподавать. А, то что речь идет именно о разных подходах это факт. В общих топологических пространствах пределы не очень используются (не буду объяснять почему, а то вызову гнев ещё раз), а открытые множества всегда под рукой.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 22:43 
Заблокирован
Аватара пользователя


03/08/09

235
Самое простое при методику Башмакова видел в http://works.tarefer.ru/64/100385/index.html

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 22:55 


21/07/10
555
Виктор Викторов в сообщении #346597 писал(а):
Это называется подмена тезиса. В Вашем предыдущем комментарии не было ни одного слова о преподавании. Прочтите то, что Вы же и написали. Я не давал советов как и что преподавать. А, то что речь идет именно о разных подходах это факт. В общих топологических пространствах пределы не очень используются (не буду объяснять почему, а то вызову гнев ещё раз), а открытые множества всегда под рукой.


1. Это не подмена тезиса - это объективная реальность. Мат.анализ давно уже не наука, а учебный предмет. А производные функции одной переменной естественным образом к мат.анализу относятся.

2. Люди, которые занимаются общей топологией, и без этого поста знают элементарное.

3. Никакого гнева нет, просто Ваши сообщения немного напоминают стиль учебника Л.И. Камынина, на который у многих естественная аллергия.

4. Ничего личного.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 22:58 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Garik2 в сообщении #346600 писал(а):
Самое простое при методику Башмакова видел в http://works.tarefer.ru/64/100385/index.html

Спасибо! К сожалению в указанном Вами материале нет подходов к производной и интегралу без предела. Так, что поиск продолжается!

-- Пн авг 23, 2010 16:09:55 --

alex1910 в сообщении #346605 писал(а):
Мат.анализ давно уже не наука, а учебный предмет.
Это Ваше мнение.

alex1910 в сообщении #346605 писал(а):
Люди, которые занимаются общей топологией, и без этого поста знают элементарное.
Я думал, что мы не на кухне.

alex1910 в сообщении #346605 писал(а):
Никакого гнева нет, просто Ваши сообщения немного напоминают стиль учебника Л.И. Камынина, на который у многих естественная аллергия.
Не имею чести знать господина Камынина.

alex1910 в сообщении #346605 писал(а):
Ничего личного.
???????????????

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 23:29 
Заблокирован
Аватара пользователя


03/08/09

235
Башмаков, Камынин! Какие имена!
Не то что какие-то Эйлер и Гаусс.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение23.08.2010, 23:54 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Про Камынина -- молчу. А про Башмакова слышал, что он весьма серьёзный человек.

 Профиль  
                  
 
 Re: Определение производной без использования понятия предела.
Сообщение24.08.2010, 15:46 


16/08/05
1153
Первым производную без предела определил Лагранж. Об этом написано у Юшкевича.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 92 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Gagarin1968


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group