В математике есть одна нерешённая задача. Проблема Кука.
Стивен Кук сформулировал проблему так: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки.
Если относиться философски к её решению, то она решена уже давно такими лицами как Мендель. Она(решённая задача Менделя) была решена быстрее чем это было доказано....
Вот и проблема с Путником при доказательстве которой, наверное, тем самым доказываешь проблему Кука.. А это проблема...
И почему я так назойлив,... потому что проблема с Путником напрямую связана с самой древней задачей...задачей о количестве простых чисел-близнецов... На многих форумах математических, мною выставлялась тема о нахождении предела последовательности. Где были одни строго математические условия. И везде ответ легко находился и был одинаков. Предел
X это плюс-бесконечность, а Y — это 0.
Но когда, выставлялась тема с Путником, откуда в принципе и брались расчёты с последовательностью X и Y, то уже сложности с ответом.
И если в первой теме надо было найти предел последовательности X, то в вопросе с Путником это итог X. То есть на какое количество не наступит Путник.
Предел и итог, это же одно и тоже. То, к чему стремиться действие.
А вопрос то как мне кажется и не сложный.
Путник, решил пройти путь из бесконечного количества квадратов выстроенных в один ряд, и при этом наступить на все квадраты. Но, при каждой новой попытке он должен увеличивать длину своего шага.
На деле же, путник при первой попытке прошагивал

квадратов, при второй

...и так далее.
При этом:

<

<

<

< <...и так далее.
Разве у Путника есть шанс наступить на все, или же на конечное количество квадратов?!
Разве не при исходе 0 или же любого конечного числа, результат должен быть не таким?:

>

>

>

> <...и так далее.
Так вот..может быть здесь спрятана проблема Кука?! Предел последовательности Х мы определяем легко, а ответ с итогом Х(числом квадратов на которые не наступит Путник) уже не можем найти ответ.
В принципе, процесс пути Путника, можно записать и по иному. Не через величину прошагивания.
1 попытка.
Если квадраты разбить численно на группы по 5 квадратов, то мы получим бесконечное количество групп по 5 квадратов в каждой.
Так вот, пройдя путь, Путник наступил в каждой группе на 2 квадрата.
2 попытка.
Если оставшиееся не тронутыми квадраты разбить численно на группы по 7 квадратов, то мы получим бесконечное количество групп по 7 квадратов в каждой.
Так вот, пройдя путь, Путник наступил в каждой группе на 2 квадрата.
И так далее. При этом количество квадратов в новой группе это следующее простое число.
А число наступлений в группе , одинаковое, это 2.
И Путник наступал на квадраты с такими темпами:

...

...

...

...

...
..и так бесконечно далее.
Если следовать тому что Путник наступает постепенно на первые квадраты от начала, то тогда и неважно сама система наступлений и мы в итоге придём к 0 квадратов на которые не наступала нога Путника.
Но тогда мы увидим:
Вот к примеру из первых 5 мы наступили на 2. Осталось 3. Тогда добавляем 4 и получаем 7.
Теперь от 7 наступаем на 2 и получаем 5. Далее до 5 добавляем 6, что бы в группе было 11, и наступаем на 2. Осталось 9.
Далее, добавляем 4 и получаем в группе 13. Наступаем на 2 и получаем 11.
Далее, добавляем 6 и получаем в группе 17. Наступаем на 2 и получаем 15.
Далее, добавляем 4 и получаем в группе 19. Наступаем на 2 и получаем 17.
Далее, добавляем 6 и получаем в группе 23. Наступаем на 2 и получаем 21.
И так далее.
Что мы видим?
Вот как шло увеличение остатка после наступления:
3..5..9..11...15...17...21..
Как мы видим количество на которое мы не можем наступить, растёт...и мы его как бы выталкиваем вперёд...Если убираем первые. Но..наши квадраты «прибиты» к дороге, и поэтому это количество должно располагаться на своём месте.
Вот и поэтому вопрос вопросов.
И это как оказалось ТРУДНЫЙ вопрос!. Если честно признаться, то,ранее я думал иначе.
А вопрос в том же: "На какое количество квадратов не наступит Путник? Разве не на бесконечное?!»