Игра, что Вы описали - нерисковая и выгодная.
К чёрту непонятные термины! Мы с Вами не сходимся в определении понятия <<вероятность>>, а Вы меня пугаете словами, значения которых я не знаю.
Давайте по сути.
Как я понял, в такую игру Вы бы поиграли (или, по крайней мере, признаёте, что теория вероятности здесь применима и говорит в вашу пользу).
А теперь фокус.
Представим другую игру.
Вы платите 100 руб. При этом, с вероятностью

вы не получаете ничего, с вероятностью

вы получаете 20 руб.,
с вероятностью

--- 40 рублей и т.д., с вероятностью

--- 200 руб.
Но проводится она
один раз.
Эта игра эквивалентна той, первой, в которой было 10 опытов. Вернее, это она и есть, просто описана немного по-другому. Но теперь Вы играть отказываетесь? Т.е. просто потому, что я стал описывать одно и то же событие, но немного по-другому, и у меня получилось формально одно испытание, Вы говорите, что ТВ использовать нельзя, а если как бы десять, то можно?
Не вижу у Лукьяненко ошибок, наоборот я считаю, что у него правильный подход.
У него методологическая ошибка. Которая заключается в том, что, строго говоря, в схеме Бернулли вероятность выпада наивероятнейшей комбинации падает с ростом

. Если

то 7:3 ещё куда ни шло. А если

, то вот чтобы было так ровно 67:33 это уже редкость. А если будет 1000? А читатель может подумать наоборот.
1) Либо не интересуется никакой информацией о колоде и просто вытягивает карту. Красная --- все деньги ему, чёрная --- все деньги оппоненту.
2) Либо узнаёт сколько в колоде каких карт. После этого вытягивает. Но теперь уже наоборот, чёрная --- деньги ему, красная --- деньги сопернику.
Что-то Вы перемудрили, профессор. Какой мне толк от того, что я знаю распределение карт, если я никак этой информацией распорядиться не могу и ничего не решаю?