В том, что если у первого попавшегося прохожего студента спросить, чему будет равно среднее значение распределения Коши (нарисовав для наглядности график) -- он, скорее всего, тоже с уверенностью ответит, что в нуле. И его логика ровно ничем не будет отличаться от логики того прохожего насчёт отрезка. Всего лишь логика симметрии (что почтенно, конечно, но не имеет отношения к корректности постановки вопроса).
Уж и не знаю, где Вы таких студентов берете :) Первый попавшийся студент должен использовать ту же логику прохожего, но у него в сравнении с прохожим больше возможностей свой ответ проконтролировать. Ответ о матожидании ограниченного равномерного распределения в таком контроле не нуждается, а про Коши студент уже должен подумать.
Principal value существует - это за матожидание считать?
Неизвестно. Неизвестно, зачем конкретно это дальше понадобится и адекватно ли для дальнейших целей использование именно главного значения.
Замечательно, только при чем тут матожидание? Давайте ещё придумаем для распределения без первого момента ещё парочку характеристик и обе математическим ожиданием обзовём?