2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 52  След.
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение02.04.2010, 15:31 


29/08/09
691
К сожалению, на этом не заканчивается. Поскольку это как раз рассмотренный первый вариант.
А существует еще второй. Который я дальше и рассматривала.
Графики я строила, функции исследовала (и кубическую в том числе).
Пыталась что-то найти через критические точки кубической функции (они иррациональны).
Я много чего пробовала. Но я также чувствую, что все гораздо проще и ближе, где-то рядом.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение03.04.2010, 18:47 


16/08/05
1153
Да, теперь понял, это был первый вариант, когда $y(x)=(cd-p)x^3-c^{2}dx^2+c^{2}px=0$.

Отмечу еще следующее. Пункту 2.1, т.е. когда функцию $y(x)=(cd-p)x^3-c^{2}dx^2+c^{2}px$ рассматриваете в точках $a$ и $b$, при этом $y(a)=-y(b)$, соответствуют также следующие соотношения:

$(cd-p)c=(ad-p)a+(bd-p)b$
$\frac{c^{2}}{cd-p}=\frac{h^{2}}{hd-p}$
$h<\frac{2p}{d}<c$

При этом выражение $\frac{c^{2}}{cd-p}=\frac{h^{2}}{hd-p}$ соответствует рассмотренной ранее функции $f(x)=\frac{x^{2}}{xd-p}$, у которой в первой четверти возможны только два корня, меньший из которых всегда меньше $\frac{2p}{d}$. Две функции $f(c)=\frac{c^{2}}{cd-p}$ и $h(c)=\frac{cp}{cd-p}$ пересекаются только в одной точке $c=p$, в которой $f(c)=f(p)=\frac{p}{d-1}$. Если меньший корень $h$ уравнения $0=-f(p)+\frac{x^{2}}{xd-p}$, будет такой, что $f(h)=h$, то будет найдена единственная удовлетворяющая нужным условиям точка. И действительно $f(h)=h=\frac{p}{d-1}$.

Изображение

Т.е. пункту 2.1 удовлетворяет только сочетание $c=p,h=\frac{p}{d-1}$, но оно не удовлетворяет условию $b<h$ и исходной системе $\left\{a+b=c+d,a^2+b^2=c^2+p\right\}$.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение04.04.2010, 07:12 


16/08/05
1153
dmd в сообщении #306084 писал(а):
... но оно не удовлетворяет условию $b<h$ и исходной системе $\left\{a+b=c+d,a^2+b^2=c^2+p\right\}$.


Нет, не так. На самом деле может удовлетворять.

Правильнее при $c=p$ решить систему

$\left\{\begin{array}{l}a+b=c+d\\a^2+b^2=c^2+p\end{array}\right\}$

получить

$\left\{\begin{array}{l}a=\frac{1}{2} \left(d+p+\sqrt{-d^2-2 d p+p (2+p)}\right)\\b=\frac{1}{2}\left(d+p-\sqrt{-d^2-2 d p+p (2+p)}\right)\end{array}\right\}$

и подставить их и $c=p$ в исходное $a^3+b^3-c^3=0$, которое чудесно преобразится в уравнение

$-d^3+3 d p-3 d^2 p+3 p^2=0$.

А вот оно уже не разрешимо в натуральных числах.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение01.05.2010, 04:24 


29/08/09
691
Уважаемый dmd! Извините, что не ответила на Ваш пост. У меня большие личные неприятности, было не до Теоремы.
Спасибо !
Постараюсь в ближайшее время написать ответ со своими соображениями.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение05.05.2010, 12:49 


29/08/09
691
Уважаемые форумчане! Возникли вопросы, если можно, укажите на ошибку в рассуждениях (ошибка есть, пробовала подставлять значения(иррациональные)) :
Рассмотрим функцию $y=x^3(cd-p)-c^2x^2d+c^2xp$.
Найдем критические точки функции:
$y'=3x^2(cd-p)-2c^2dx+c^2p$ $y'=0$ при $3x^2(cd-p)=c^2(2xd-p)$, $\frac{3x^2}{2xd-p}=\frac{c^2}{cd-p}$, $2xd-p>0$, $cd-p>0$(это отдельно доказывается).
Если функция в точках $a$ и$b$ принимает одинаковые значения разных знаков, то (если $a$ -не критическая точка функции), существует точка $a_1$, такая, что $a_1^3(cd-p)-c^2a_1^2d+c^2a_1p=-(b^3(cd-p)-c^2b^2d+c^2bp)$, $a^3(cd-p)-c^2a^2d+c^2ap=-(b^3(cd-p)-c^2b^2d+c^2bp)$. Тогда
$(a^3+b^3)(cd-p)-c^2((a^2+b^2)d-(a+b)p)=0$, $(a_1^3+b^3)(cd-p)-c^2((a_1^2+b^2)d-(a_1+b)p)=0$.
Отсюда $\frac{a^3+b^3}{(a^2+b^2)d-(a+b)p}=\frac{a_1^3+b^3}{(a_1^2+b^2)d-(a_1+b)p}=\frac{c^2}{cd-p}$, (знаменатели дробей не равны нулю)
Рассмотрим функцию $y=\frac{x^3+b^3}{(x^2+b^2)d-(x+b)b}$.
Найдем критические точки:
$y'=\frac{3x^2((x^2+b^2)d-(x+b)p)-(2xd-p)(x^3+b^3)}{((x^2+b^2)d-(x+b)p)^2}$, $y'=0$, при$\frac{3x^2}{2xd-p}=\frac{x^3+b^3}{(x^2+b^2)d-(x+b)p}$.

Вопрос: можно ли говорить, что значение критической точки (между $a$ и $a_1$ функции $y=x^3(cd-p)-c^2x^2d+c^2xp$ равно значению критической точки (между $a$ и $a_1$ функции $y=\frac{x^3+b^3}{(x^2+b^2)d-(x+b)p}$? (если есть ошибка, то она именно в этом утверждении)

(То есть идея в том, чтобы доказать, что $a$ и $b$- и есть критические точки функции) тогда все получается.

Заранее спасибо.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение06.05.2010, 10:07 


16/08/05
1153
Критические точки функции $y(x)=x^3(cd-p)-c^2x^2d+c^2xp$ будут $\frac{c(c d \pm \sqrt{c^2 d^2-3p (c d-p)})}{3( c d-p)}$. Подстановка их в производную функции $y(x)=\frac{x^3+b^3}{(x^2+b^2)d-(x+b)p}$ не обращает выражение производной в ноль (проверено в CAS), поэтому ответ - нет.
Только пока не понятен смысл рассмотрения $a_1$отличного от $a$ и соответственно функции $y(x)=\frac{x^3+b^3}{(x^2+b^2)d-(x+b)p}$.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение22.05.2010, 21:03 


16/08/05
1153
Мне думается, у natalya_1 доказательство для тройки сложилось. Попробую переизложить.


п.1. Для натуральных взаимнопростых $a$, $b$, $c$, $a>b$, рассмотрим возможное равенство:

$a^3+b^3=c^3$ (1)


п.2. Для натуральных $d$ и $p$ справедливо:

$\left\{\begin{array}{l}a+b-c=d\\a^2+b^2-c^2=p\end{array}\right\}$ (2)

(Оффтоп)

это требуется доказать, natalya_1 выше говорила, что док-во простое, хотя у меня честно не получилось



п.3. Перемножим левые и правые части равенств (2), получим:

$a(ad-p)+b(bd-p)=c(cd-p)$ (3)

При этом $ad-p>0$, $bd-p>0$, $cd-p>0$

(Оффтоп)

Доказательство:
natalya_1 в сообщении #243556 писал(а):
$bd-p=b(a+b-c)-(a^2+b^2-c^2)=ba+b^2-cb-a^2-b^2+c^2=(c-a)(c+a)-b(c-a)=(c-a)(c+a-b)$
$c-a>0$, $c+a-b>0$, следовательно, $bd-p>0$.
$a>b$, $c>b$, следовательно, $ad-p>0$, $cd-p>0$



п.4. Перемножим левые и правые части равенств (1) и (3), получим:

$c^3a(ad-p)+c^3b(bd-p)=a^3c(cd-p)+b^3c(cd-p)$

и, следовательно:

$(cd-p)a^3-c^{2}da^2+c^{2}pa=-((cd-p)b^3-c^{2}db^2+c^{2}pa)$ (4)

Левая и правая части равенства (4) подобны и соответствуют функции $y(x)=(cd-p)x^3-c^{2}dx^2+c^{2}px$ и соотношению $y(a)=-y(b)$. При этом из (4) следует также возможность $y(a)=y(b)=0$.

Рассмотрим оба варианта $y(a)=y(b)=0$ и $y(a)=-y(b)$ по отдельности.


п.5. $y(a)=y(b)=0$:

$\left\{\begin{array}{l}(cd-p)a^3-c^{2}da^2+c^{2}pa=0\\(cd-p)b^3-c^{2}db^2+c^{2}pb=0\end{array}\right\}$

или

$\left\{\begin{array}{l}a^{2}(cd-p)=c^{2}(ad-p)\\b^{2}(cd-p)=c^{2}(bd-p)\end{array}\right\}$

тогда

$\frac{a^{2}}{ad-p}=\frac{b^{2}}{bd-p}=\frac{c^{2}}{cd-p}$ (5)

при этом знаменатели в (5) не могут быть равны нулю, что доказано в п.3.

Соотношение (5) соответствует равенству трёх значений $f(a)=f(b)=f(c)$ функции $f(x)=\frac{x^{2}}{xd-p}$.

Исследуем функцию $f(x)$ и находим точку разрыва $x=\frac{p}{d}$ и единственный экстремум $x=\frac{2p}{d}$ в диапазоне $]\frac{p}{d},\infty]$. Следовательно для трёх разных $a$, $b$, $c$ соотношение $f(a)=f(b)=f(c)$ не возможно, и значит невозможно $y(a)=y(b)=0$.


п.6. $y(a)=-y(b)$:

между $a$ и $b$ существует такое $h$, $a>h>b$, что $y(h)=0$.

Т.е. $y(h)=(cd-p)h^3-c^{2}dh^2+c^{2}ph=0$, или $(cd-p)h^2-c^2(hd-p)=0$. Тогда:

$\frac{h^{2}}{hd-p}=\frac{c^{2}}{cd-p}$ (6)

Из (6) следует, что $h=\left\{\frac{cp}{cd-p},c\right\}$, но т.к. $h<a<c$, то остается $h=\frac{cp}{cd-p}$.

Выражение (6) соответствует рассмотренной в п.5. функции $f(x)=\frac{x^{2}}{xd-p}$, у которой в первой четверти возможны только два корня, меньший из которых всегда меньше $\frac{2p}{d}$. А выражению $h=\frac{cp}{cd-p}$ поставим в соответствие функцию $g(x)=\frac{xp}{xd-p}$. Две функции $f(x)$ и $g(x)$ пересекаются только в одной точке $x=p=c$, в которой $f(p)=g(p)=\frac{p}{d-1}=h$. Если меньший корень $x_1$ уравнения $0=-f(p)+\frac{x^{2}}{xd-p}$, будет такой, что $f(x_1)=x_1$, то будет найдена единственная удовлетворяющая нужным условиям точка. И действительно $f(x_1)=x_1=\frac{p}{d-1}$. При этом второй больший корень $x_2=c=p$ и $f(x_2)=g(p)=\frac{p}{d-1}=h$.

(Оффтоп)

Иллюстрация:

Изображение


Т.е. выражение (6) возможно только в единственном варианте, соответствующем $\frac{h^{2}}{hd-p}=\frac{c^{2}}{cd-p}=h$ и $c=p$.

Далее при $c=p$ решаем систему (2), получаем

$\left\{\begin{array}{l}a=\frac{1}{2} \left(d+p+\sqrt{-d^2-2 d p+p (2+p)}\right)\\b=\frac{1}{2}\left(d+p-\sqrt{-d^2-2 d p+p (2+p)}\right)\end{array}\right\}$

и подставляем их и $c=p$ в исходное (1), которое преобразуется в уравнение $-d^3+3 d p-3 d^2 p+3 p^2=0$, не разрешимое в натуральных числах.

Следовательно равенство $y(a)=-y(b)$ невозможно.


п.7. Совокупно из п.5. и п.6. следует невозможность (1).

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение23.05.2010, 23:54 
Заслуженный участник


04/05/09
4589
dmd в сообщении #322847 писал(а):
Две функции $f(x)$ и $g(x)$ пересекаются только в одной точке $x=p=c$
$p\ne c$
dmd в сообщении #322847 писал(а):
в которой $f(p)=g(p)=\frac{p}{d-1}=h$
$\frac{p}{d-1}\ne h$

Эти ошибки влияют на дальнейшие выводы?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 07:51 


16/08/05
1153
venco в сообщении #323248 писал(а):
dmd в сообщении #322847 писал(а):
Две функции $f(x)$ и $g(x)$ пересекаются только в одной точке $x=p=c$
$p\ne c$

Почему не равно?
Функция $g(x)=\frac{xp}{xd-p}$ нас интересует только при одном значении переменной $x$, а именно $x=c$, т.к. соответствие $g(x)=\frac{xp}{xd-p}$ выражению $h=\frac{cp}{cd-p}$ было заранее оговорено. Поэтому, найдя из других соображений $x=p$, не остаётся никаких других вариантов, кроме как приравнять $p=c$.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 14:19 
Заслуженный участник


04/05/09
4589
dmd в сообщении #323295 писал(а):
venco в сообщении #323248 писал(а):
dmd в сообщении #322847 писал(а):
Две функции $f(x)$ и $g(x)$ пересекаются только в одной точке $x=p=c$
$p\ne c$

Почему не равно?
Функция $g(x)=\frac{xp}{xd-p}$ нас интересует только при одном значении переменной $x$, а именно $x=c$, т.к. соответствие $g(x)=\frac{xp}{xd-p}$ выражению $h=\frac{cp}{cd-p}$ было заранее оговорено.
Это правильно, $g(c) = h$.

dmd в сообщении #323295 писал(а):
Поэтому, найдя из других соображений $x=p$, не остаётся никаких других вариантов, кроме как приравнять $p=c$.
Другие соображения: $f(p) = g(p)$. Это тоже правильно. А вот $p=c$ - не правильно.
Вы не забыли, что $x$ - аргумент разных функций, а не число?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 15:10 


16/08/05
1153
Честно ничего не понял. Вы хотите сказать, что аргумент функции $g(?)$ нельзя располагать в той же числовой оси, что и аргумент функции $f(x)$? Т.е. вместо $g(x)$ нужно было вводить допустим $g(z)=\frac{zp}{zd-p}$. Это? Если да, тогда сразу вопрос - почему?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 16:49 
Заслуженный участник


04/05/09
4589
Честно говоря, не понял, почему вы не поняли.
Если отвлечься от конкретных функций, то вы проделали такой финт:
1. рассмотрим уравнение $g(x)=h$, у него есть корень $x=p$
2. а у уравнения $f(x)=g(x)$ есть корень $x=c$
3. значит $x=c=p$ :wink:
Ну и как прикажете относиться к такой игре с обозначениями?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 18:31 


16/08/05
1153
Значит всё-таки Вы утверждаете именно то, о чём я и спросил в предыдущем посте: эти два уравнения $g(x)=h$ и $f(x)=g(x)$ нельзя решать в одной системе. Иначе, т.е. если можно, то я формально прав и даже ВольфрамАльфа меня поддержит. Если таки не прав, то снова вопрос из предыдущего поста: почему? Я честно пока не догоняю, почему аргументы этих двух уравнений нужно располагать в разных системах отсчета (и соответственно обозначать разными символами, чтобы действительно было $p\ne c$ при формальном вычислении).

А ещё проще вопрос такой: почему эти два уравнения не образуют одну систему?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение24.05.2010, 19:56 
Заслуженный участник


04/05/09
4589
dmd в сообщении #323512 писал(а):
Значит всё-таки Вы утверждаете именно то, о чём я и спросил в предыдущем посте: эти два уравнения $g(x)=h$ и $f(x)=g(x)$ нельзя решать в одной системе.
А с чего вдруг они должны быть в одной системе? А не, например, $g(x)=p$ и $f(x)=g(x)$?
Т.е. я не увидел обоснования, почему именно такие уравнения должны быть решены вместе.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение25.05.2010, 07:48 


16/08/05
1153
Согласен, нет оснований для $p=c$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 770 ]  На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 52  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group