Да, сепарабельность - просто, согласен (можно даже просто характеристические функции одноточечных множеств брать). Но тогда у меня встречный вопрос - а

сепарабельно? (разумеется,

сепарабельно; это у меня всё с нормой-вариацией).
А полноту, наверное, надо по какой-нибудь стандартной схеме доказывать. Берем фундаментальную последовательность, она, очевидно, равномерно сходится (по критерию Коши равномерной сходимости, и т.к. метрика BV больше равномерной), поэтому уже знаем, сходимость ее к чему надо доказывать. Дальше ну там, наверное, выбираем быстро сходящуюся подпоследовательность, наверное, стукаем какой-нибудь теоремой Хелли (ну которые в КФ там же), ну или не знаю, попробуйте.