Задача
ММ120 утратила статус конкурсной и может свободно обсуждаться на форуме.
===============Задача ММ120 продолжает линию задачи ММ57 и тематического конкурса 11-го тура.
ММ120 (7 баллов)
В задаче ММ103 каждому выпуклому многоугольнику был поставлен в соответствие сопровождающий граф:
вершины графа - элементарные многоугольники, на которые разбивается исходный многоугольник своими диагоналями;
две вершины смежны, если соответствующие многоугольники имеют общую сторону.
Найти возможные значения диаметра и радиуса, а также возможные количества периферийных и центральных вершин сопровождающего графа произвольного выпуклого n-угольника.
================РешениеЛегко видеть (и доказать), что расстояние между двумя вершинами сопровождающего графа равно количеству диагоналей исходного многоугольника, разделяющих элементарные многоугольники, соответствующие данным вершинам.
С периферийными вершинами и диаметром дело обстоит достаточно просто. Легко понять, что периферийными вершинами сопровождающего графа будут элементарные треугольники, имеющие общую сторону с исходным многоугольником. При четном n наиболее удаленными друг от друга вершинами графа будут элементарные треугольники, примыкающие к противоположным сторонам исходного n-угольника (рис. 1), а при нечетном - к "наиболее противоположным".
Простой комбинаторный подсчет количества диагоналей, разделяющих такие элементарные треугольники, дает следующие значения диаметра:

для четных n и

- для нечетных.

Итак, количество периферийных вершин и диаметр сопровождающего графа зависят только от числа сторон исходного многоугольника, а именно:
диаметр равен
![$\left[\frac{n^2-8}4\right]$ $\left[\frac{n^2-8}4\right]$](https://dxdy-02.korotkov.co.uk/f/5/8/f/58f9e27c9d48f2eb80a912cfd34d59e582.png)
, а число периферийных вершин сопровождающего графа равно n (при

).
Гораздо сложнее обстоит дело с радиусом и центральными вершинами сопровождающих графов.
Достаточно просто определить лишь наименьшее значение радиуса.
Сначала оратимся к исходным многоугольникам с нечетным числом сторон

. В этом случае для каждого k существует многоугольник, радиус которого равен

, т.е. половине диаметра. Это верно, например, для правильных многоугольников.
Диагонали многоугольника с нечетным числом сторон, соединяющие вершину с концами противолежащей стороны, будем называть "большими". Треугольники, высекаемые парами больших диагоналей, выходящих из одной вершины исходного многоугольника, будем называть "центральными секторами".
В общем случае радиус сопровождающего графа нечетноугольника будет равен половине диаметра тогда и только тогда, когда существует элементарный многоугольник, лежащий внутри всех центральных секторов.
На рисунке 2 такой элементарный многоугольник закрашен желтым цветом, а большие диагонали выделены красным.
Если такой элементарный многоугольник существует, то он является единственной центральной вершиной сопровождающего графа.

Заметим, что наши рассуждения будут верны и для

. В этом случае "большими диагоналями" будут стороны треугольника, а сам треугольник будет центральным сектором для каждой своей вершины.
Однако, начиная с

, элементарный многоугольник, принадлежащий всем центральным секторам может и не существовать.
На рисунке 3 представлен такой девятиугольник. Элементарные многоугольники, являющиеся центральными вершинами сопровождающего графа, выделены желтым цветом.
Обратите внимание, что по пути из каждой центральной вершины в наиболее отдаленную от нее приходится преодолевать пять больших диагоналей (а для девятиугольника на рисунке 2 хватало четырех).

Используя тот же подход (назовем его "методом децентрации"), при подходящих k можно добиться сколь угодно большого превышения радиусом значения

.
Для этого подходят многоугольники, у которых не только большие диагонали, но и примыкающие к ним образуют секторы. имеющие пустое пересечение.
На рисунке 4 представлен 15-угольник, радиус сопровождающего графа которого равен 30, т.е. на 3 превосходит половину диаметра. 7 центральных вершин выделены желтым цветом.

Если же число сторон исходного многоугольника увеличить до 21, то можно построить многоугольник с радиусом графа равным 60, что на 6 больше половины диаметра.
На рисунке 5 представлен такой многоугольник (10 элементарных многоугольников, соответствующих центральным вершинам, цветом не выделены из-за малых размеров).

Обобщая случаи

, придем к выводу, что при

существует многоугольник, сопровождающий граф которого имеет радиус

и

центральных вершин.
Я полагаю, что именно для многоугольников с числом сторон

имеет место наибыстрейший рост максимального радиуса, но точного доказательства этого факта у меня нет.
Если n не сравнимо с 3 по модулю 6, то радиус растет не так быстро, но сама идея децентрации, все равно, работает. Например, убрав пару вершин у 21-угольника с рисунка 5, можно получить 19-угольник, у которого радиус превышает половину диаметра на 3.
Перейдем к рассмотрению сопровождающих графов многоугольников с четным числом сторон.
Первым делом докажем, что в этом случае радиус не может равняться половине диаметра.
Для

это очевидно в силу нечетности диаметра. Но значение

в этом случае достижимо.
Для получения подходящего многоугольника достаточно отрезать уголки у правильного многоугольника с нечетным числом сторон (рис.6).

Пусть теперь

. Положим

.
Допустим, что у графа 4k-угольника есть вершина с эскцентриситетом r.
Тогда расстояние от этой вершины каждой периферийной вершины должно равняться r:
Оно не может быть больше r, поскольку r - это эксцентриситет, а если хотя бы одна периферийная вершина удалена меньше чем на r, то диаметр будет меньше 2r.
Но расстояния от любой вершины до периферийных вершин, примыкающих к соседним сторонам исходного многоугольника, имеют разную четность (в одном случае надо пересекать большую диагональ, выходящую из общей для данных сторон вершины многоугольника, а в другом - нет).
Полученное противоречие доказывает наше утверждение.
Наименьшим значением радиуса для

будет

. Подходящий 4k-угольник можно получить из правильного 2k-угольника, отрезав от него маленькие уголки: k совсем малюсенькиx, а k других чуть побольше (см. рис.7)
Большие диагонали многоугольника с четным числом сторон (

) могут пересекаться в одной точке (например, в правильном многоугольнике). Это приводит к образованию в сопровождающем графе цикла длины n. Необходимость "обходить эту дыру" (см. рис. 8) приводит к увеличению радиуса на
![$\left[\frac{n}4\right]$ $\left[\frac{n}4\right]$](https://dxdy-04.korotkov.co.uk/f/7/9/a/79a82d62014eb0e73e8660792f96bc9682.png)
.

Гипотеза, высказанная несколькими конкурсантами (к ней склонялся и я на ранней стадии составления задачи), "наибольшее значение радиуса сопровождающего графа 2k-угольника достигается для правильных многоугольников и равно

"
не верна для почти всех k.
Ведь превышение радиуса над половиной диаметра растет для графов правильных 2k-угольников линейно относительно числа сторон, в то время как метод децентрации (а он применим и для разбираемого случая), дает рост по квадратичному закону.
Впервые четноугольник, построенный по методу децентрации, приводит к графу, радиус которого превышает радиус графа правильнгого многоугольника с тем же числом сторон при

Посмотреть (но не рассмотреть :)) его можно на рисунке 9. Его радиус (равный, например, расстоянию от желтого элементарного треугольника в центре, до элементарного треугольника, примыкающего к стороне 5-6) равен 79, в то время как радиус графа правильного 24-угольника равен 77.

Ситуация с центральными вершинами достаточно сложна. Единственную центральную вершину имеют графы треугольников, пятиугольников и семиугольников.
У графа четырехугольника все 4 вершины центральные. Для остальных n количество центральных вершин может быть различным.
Например, у графа шестиугольника одна либо шесть центральных вершин. А у графа восьми угольника может быть две, три или восемь центральных вершин (см. рис. 10-12).
Для общего случая справедливы такие утверждения:
При n, не кратном 4, существуют многоугольник, граф которого имеет единственную центральную вершину;
При четном n существует многоугольник, граф которого имеет n центральных вершин.
Больше чем n центральных вершин граф n-угольника иметь, по-видимому, не может.

ОбсуждениеЕдинственную центральную вершину может иметь и граф 12-угольника. 16-угольников с таким свойством я не нашел. Не исключено, что графа с единственной центральной вершиной не существует тогда и только тогда, когда число сторон соответствующего многоугольника - степень двойки.
Анонсируя задачу, я заявил, что она имеет прямое отношение не только к ММ57 и к тематическим задачам 11-го тура, но и еще к одной марафонской задаче. Чтобы убедиться в справедливости этого утверждения достаточно сравнить выражение для диаметра сопровождающего графа с верхней гранью диапазона отношения суммы длин диагоналей к периметру выпуклого многоугольника, вычисленной в задаче
ММ2.
Анатолий Казмерчук предложил красивую формулу для определения расстояния между вершинами сопровождающего графа:
Занумеруем (например, против часовой стрелки) n вершин исходного многоугольника. Занумеруем (например, слева направо, если смотреть от вершины) секторы, на которые разбивают исходных многоугольник, диагонали исходящие из данной вершины. Каждому элементарному многоугольнику поставим в соответствие уникальный набор из n индексов, соответствующих секторам, в которые он попал. Тогда расстояние между элементарными многоугольниками (вершинами сопровождающего графа) будет равно полусумме абсолютных величин разностей между соответствующими индексами.
Не то, чтобы считать таким способом было быстрее, чем с помощью диагоналей, но смотрится изящно.
Номинал в 7 баллов был назначен для ММ120 дабы не спугнуть участников :)
На самом деле 7 баллов планировалось ставить тем участникам, которые разберутся с диаметром и заметят непостоянство радиуса для многоугольников с нечетным числом сторон. В итоге я почти угадал :)
При подведении итогов я столкнулся дилеммой.
Чье решение лучше:
того участника, который больше нашел больше других, но при этом кое-в чем ошибся;
того, который не ошибался (реже ошибался), но при этом и обнаружил меньше локальных закономерностей?
Если добавить сюда, что строгость обоснований тоже разнится, станет понятно, с какими трудностями я столкнулся. Так что, не обессудьте!
Ясно, что точку ставить рано. Получены (а тем более обоснованы) ответы не на все вопросы задачи. Кроме того, возникает целый ряд новых вопросов. В общем, есть что пообсуждать.
Если же обсуждение (по не самой лучшей марафонской традиции) не завяжется, пеняйте на себя. Новые встречи с выпуклыми многоугольниками и их графами вам гарантированы! :)
НаградыЗа решение задачи ММ120 Сергей Половинкин получает 8 призовых баллов, Алексей Волошин и Анатолий Казмерчук - по 7 призовых баллов, а Николай Дерюгин - 4 призовых балла.
Эстетическая оценка задачи - 4.7 балла