Гениально! Поди туда, не знаю куда, докажи то, не знаю что.
Нет, нет. Не "поди", а "пойдем". И не "не знаю куда", а "не знаешь куда" (я-то знаю
). Претензию можно было бы понять, если бы вас отправляли в самостоятельное плавание. Нет, вас проведут. Покажут фокусы, которые вы и должны разоблачить.
О нет, это есть нечто ужасное для математиков, хотя, пожалуй, менее ужасное, чем моя подпись.
Да, подпись жжот. Я сам долго пытался вообразить этот объект. Но, согласитесь, ее ужас не в том, что она формально неверна, а именно в том, что противоречит штампам мышления. И тут будет уместно еще раз отослать читателя к постам PAV'а в соседней теме.
Сейчас лень из него цитаты искать, потом как-нибудь, да это и так все знают вроде.
Конечно, не нужно объяснять мне, кто такой Арнольд и какие идеи он продвигает. Собственно, "по-французски" --- в тот же огород камешек. Бурбакизация мне не то чтобы не нравится, просто ее насаждение в математике, а тем более в физике, мне кажется ненужным. Правильное отношение к этому, на мой взгляд, должно быть примерно как к интегрированию дробно-рациональных функций вручную: понимать, как это делается, надо, но практически их вычисляют с помощью какого-нибудь матпакета. И нелишне будет еще раз напомнить, что все это мода относительно недавних лет, сама математика существенно старше. (Обсуждение лекторов почитал, но, по незнакомству с главными героями, немногое сумел из этого вынести.)
и сами могут, если понимают).
Vicious circle detected. "Понятное объяснение --- это такое, что студенты <далее по тексту>". Так и не понял я, что такое "понятный" в математическом смысле
. Только осталось у меня ощущение, что математики смешивают глаголы "знать" и "понимать". На мой взгляд, когда вам формулируют теорему без доказательства, пусть даже строго, вы не можете ее "понимать", вы ее можете только "знать", то есть вызубрить. Но вы,
AD, вроде бы с этим не согласны. Вы считаете, что вызубрить приходится, когда формулировка нестрогая, а вот строгую можно (без доказательства!) каким-то непостижимым образом понять. Иначе говоря, вы видите тут какую-то разницу, которую никак не могу понять я. По мне, без доказательства и строгая формулировка не нужна, все равно ее можно только вызубрить ("знать"). А при наличии доказательства формулировка восстанавливается сама собой, вот тут-то можно проследить логическую цепочку от посылок в выводу и назвать это "пониманием". Причем эта цепочка не должна даже быть формально строгой, достаточно наводящих соображений, это уже, на мой взгляд, можно назвать "пониманием".
Ага, вот. Бурбакизация (раз уж вы опрометчиво упомянули этот ярлык), судя по всему, пытается подменить понимание знанием. То есть понимания как такового не требуется (вроде бы Арнольд что-то такое писал, это еще от Декарта идет). Нужно просто "знать" (вызубрить) формулировку теоремы, ее доказательство, правила "математической грамматики". Тогда, конечно, можно говорить о формулировке без доказательства. Это предложение, построенное по "правилам грамматики". Нестрогие формулировки, понятное дело, не годятся. Доказательство --- это тоже предложение, построенное по "правилам грамматики" и т. д.
И еще один момент. Если уж мы говорим о теоремах без доказательства (необязательно вовсе без доказательства, хотя бы о формулировке самой теоремы
до доказательства), то можно ведь настрогать сколько угодно совершенно строгих, но ошибочных утверждений (или даже вовсе "очевидно" бессмысленных). Причем они в бурбакистике фигурируют как бы на равных с утверждениями истинными (а что, главное --- формальная строгость). Мне как-то раз довелось разговаривать с В. П. Масловым (которого у вас вроде математиком не считают). Разговор происходил так: Маслов расхаживал по кабинету и "формулировал теоремы", настолько очевидно неверные, что я тут же приводил контрпримеры. И так полтора часа. Но ведь это же чистая схоластика! Разве
так вообще можно размышлять? То есть формулируя строгие, но, возможно, неверные утверждения? И, видимо, пытаясь их потом доказать? На мой взгляд, все происходит наоборот: сначала выстраивается логическая цепочка, а потом уже шлифуются ее концы (и некоторые звенья): условия теоремы и ее вывод.
ОК, мне кажется, что мы уже достаточно поговорили о строгости и формальности вообще. Давайте все-таки разберем хоть один конкретный пример. Вот с теоремой Нетер мне кажется, попроще, давайте начнем с него.