Я хотела открыть новую последовательность: магические константы наименьших квадратов из последовательных чисел Смита. Но эти смиты ужасно упрямы! Ничего с ними не получается. Если следовать примеру одной из последовательностей в OEIS, то новая последовательность будет выглядеть так:
. Магический квадрат порядка 1 имеет магическую константу 4. Магического квадрата порядка 2 не существует, поэтому пишем 0. Далее идут пропуски до квадрата порядка 14, это единственный известный наименьший квадрат из последовательных смитов, он построен ice00.
Я сегодня решила посмотреть на подобные квадраты порядков 3 и 4. Для порядка 3 проверила 10 кандидатов и – ничего! Для порядка 4 проверила 30 вариантов. Приведу варианты, проверенные мной (для каждого порядка по 10 вариантов). Может быть, я в чём-то ошибаюсь, но квадраты такие по моей программе не строятся.
*** ORDER: 3 - FROM 7695 TO 7824 MAGIC = 23286
FROM 8545 TO 8790 MAGIC = 26040
FROM 9036 TO 9285 MAGIC = 27579
FROM 14422 TO 14688 MAGIC = 43602
FROM 17149 TO 17455 MAGIC = 51804
FROM 18247 TO 18409 MAGIC = 55011
FROM 19360 TO 19602 MAGIC = 58494
FROM 26302 TO 26480 MAGIC = 79191
FROM 28749 TO 28920 MAGIC = 86499
FROM 41926 TO 42214 MAGIC = 126189
*** ORDER: 4 - FROM 58 TO 454 MAGIC= 1082
FROM 274 TO 588 MAGIC= 1781
FROM 346 TO 634 MAGIC= 1948
FROM 378 TO 645 MAGIC= 2093
FROM 526 TO 728 MAGIC= 2521
FROM 729 TO 1219 MAGIC= 3744
FROM 825 TO 1284 MAGIC= 4132
FROM 861 TO 1449 MAGIC= 4419
FROM 913 TO 1581 MAGIC= 4752
FROM 1165 TO 1776 MAGIC= 5991
Если исходить из того, что наименьший магический квадрат 4-го порядка из смитов имеет константу 1195, то первый кандидат (с константой 1082) отпадает автоматически.
Попробовала я построить и подобные магические квадраты для порядков 8 и 10. Проверила по одному варианту для каждого порядка. Получила только полумагические квадраты. Но в этом случае моя программа выполнена не полностью и вполне возможно, что квадраты существуют.
Приглашаю всех подключиться к решению этой очень непростой задачи. В последовательности всего 11 пропусков. Восполним
ice00, а что "говорят" ваши программы для подобных квадратов порядков 3 - 13? Вы ещё не пытались построить такие квадраты?