2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 13  След.
 
 Re: Одновременность
Сообщение17.08.2009, 15:14 
Аватара пользователя


29/07/07
248
Москва
Wild Bill в сообщении #235860 писал(а):
Шимпанзе в сообщении #235818 писал(а):
как трос -тонкая паутинка- может одновременно в той же самой СО растягиваться и не растягиваться?

Так не в одной, именно в разных!

Не, это его длина в разных СО может оказаться разной, а растягиваться он может (или не растягиватся) только по отношению к себе. Мед - он либо есть, либо его нет...

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 15:56 
Заблокирован
Аватара пользователя


21/04/06

4930
Munin в сообщении #235828 писал(а):
Вот идиот, прости господи...


Паутинка по условию задачи не растягивается в неподвижной системе отсчета.
Покажите мне хоть одного "эрудированного" не болвана , который напишет такое:

Munin в сообщении #235737 писал(а):
В другой ( неподвижной системе прим. Шимп.) тоже рвётся, потому что растягивается по сравнению со свободным - недеформированным положением.

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 16:54 


10/12/08
131
Новосибирск
Шимпанзе в сообщении #235871 писал(а):
Покажите мне хоть одного "эрудированного" не болвана , который напишет такое:

Munin в сообщении #235737 писал(а):
В другой ( неподвижной системе прим. Шимп.) тоже рвётся, потому что растягивается по сравнению со свободным - недеформированным положением.

Я напишу. А в чём проблема?
Если трос не растянут (недеформирован), то в собственной СО его длина равна $L$, и, следовательно, в лабораторной СО равна $L\sqrt{1-\frac{V^2}{c^2}}$. Если же в лабораторной СО его длина равна $L$, то в собственной СО она равна $\dfrac{L}{\sqrt{1-\frac{V^2}{c^2}}}$.

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 17:09 
Заблокирован
Аватара пользователя


21/04/06

4930
Ну и... почему ж трос рвется в лабораторной СО, если его длина не меняется? А?

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 18:53 


10/12/08
131
Новосибирск
Шимпанзе в сообщении #235883 писал(а):
Ну и... почему ж трос рвется в лабораторной СО, если его длина не меняется? А?

Вы издеваетесь, или на самом деле так похо соображаете? Я же человеческим языком написал...
Если бы трос не деформировался, то в лабораторной СО, его длина уменьшалась бы. Если Вам говорят, что длина движущегося стержня меньше, чем покоящегося, Вы же не возмущаетесь, почему он не разрушается от сжатия в ЛСО?

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 19:01 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Жесть в сообщении #235903 писал(а):
Вы издеваетесь, или на самом деле так похо соображаете?

Он и не пытается соображать. Его намерения другие, поязвить, например. Поэтому вопрос он задаёт не для того, чтобы подумать над ответом.

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 19:11 
Заблокирован
Аватара пользователя


21/04/06

4930
Жесть в сообщении #235903 писал(а):
Если Вам говорят, что длина движущегося стержня меньше, чем покоящегося, Вы же не возмущаетесь, почему он не разрушается от сжатия в ЛСО?


Вы в своем уме? Это ж разные вещи. Будьте добры вникните в суть вещей.
( Что -то мы скатились до уровня детского сада.)

-- Пн авг 17, 2009 20:20:45 --

Жесть в сообщении #235903 писал(а):
Если бы трос не деформировался, то в лабораторной СО, его длина уменьшалась бы.


Очень хорошо. В лабораторной СО трос со временем не деформируется, следовательно, со временем он реально удлиняется, так как по условию движется с ускорением. Неужто неясна такая простая вещь. И не смотрите Вы на Muninа, в этом вопросе он не тянет.

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 20:43 


10/12/08
131
Новосибирск
Шимпанзе в сообщении #235907 писал(а):
Очень хорошо. В лабораторной СО трос со временем не деформируется, следовательно, со временем он реально удлиняется, так как по условию движется с ускорением.

Правильно. В собственной СО удлиняется (если Вы это имеете ввиду под "реально"). Потому и рвётся. Со временем. Что не устраивает-то?

 Профиль  
                  
 
 Re: Одновременность
Сообщение17.08.2009, 23:26 
Заблокирован
Аватара пользователя


21/04/06

4930
Шимпанзе в сообщении #235907 писал(а):
Что не устраивает-то?


А не устраивает то ( фу ты!, который раз), а почему он вдруг рвется там , где не растягивается. С трех раз догадаетесь в какой СО не растягивается? Аль нет?
(Теперь моя очередь шутить: "доцент то тупой" - Жванецкий)

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 06:04 


10/12/08
131
Новосибирск
Шимпанзе в сообщении #235972 писал(а):
Шимпанзе в сообщении #235907 писал(а):
Что не устраивает-то?


А не устраивает то ( фу ты!, который раз), а почему он вдруг рвется там , где не растягивается. С трех раз догадаетесь в какой СО не растягивается? Аль нет?
(Теперь моя очередь шутить: "доцент то тупой" - Жванецкий)

Клинический случай. Объяснять что-либо бесполезно.

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 08:35 
Заслуженный участник
Аватара пользователя


15/10/08
12980
Вашу бы энергию да в мирных целях...

В некоей ИСО покоятся две частицы на расстоянии $l$ одна от другой. Одновременно (в этой ИСО) прикладываем к ним одинаковые и постоянные (в мгновенно связанной ИСО) ускорения. По истечении некоторого времени Ч ускорения убираем. На выходе поимеем две частицы, движущиеся с некоторой скоростью $V$, набранной благодаря ускорению. Мировые линии частиц (как легко понять всякому, кто не полный кретин) совмещаются трансляцией вдоль $x$ на величину $l$. Перейдем в ИСО, движущуюся относительно первоначальной со скоростью $V$. Посчитаем, чему равно расстояние между частицами в этой ИСО. Ответ: $\[l' = \frac{l}{{\sqrt {1 - V^2 } }} > l\]$.

Сколько можно обсасывать эту школьную задачу?!

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 10:38 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Да всем вокруг это ясно. Кроме отдельных Шимпанзе и МОРОЗОВ-ых.

Жесть
Попробуйте объяснить Шимпанзе, что относительное удлинение троса не равно нулю.

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 10:52 
Заслуженный участник
Аватара пользователя


17/12/08
582
Утундрий писал(а):
Сколько можно обсасывать эту школьную задачу?!

Задача парадокса Белла не такая уж и школьная, если верить тому, что написано в википедии. А википедия, я так понимаю, выражает взгляды, мнение, идеи, решение не одного единственного человека, а это какая-та общая идея (коллективное решение) некоторого сообщества, раз эта статья не редактируется. Видимо не всё так просто.

Вот краткие выдержки из статьи википедии.
Парадокс Белла
Цитата:
Для того, чтобы разрешить спор, было проведено неформальное совещание теоретического отдела ЦЕРНа. Белл утверждает, что «ясным общим мнением» отдела стало признание того, что струна не должна разорваться.

Цитата:
Белл отметил, что релятивистское сокращение тел, так же как и отсутствие сокращения расстояний между космическими кораблями в рассматриваемом мысленном эксперименте, можно объяснить динамически, используя уравнения Максвелла. Искажение межмолекулярных электромагнитных полей вызывает сокращение движущихся тел — или напряжения в них, если предотвращать их сокращение. Но между кораблями эти силы не действуют.
Под «релятивистским сокращением тел» следует понимать сокращение структуры самих тел, а не пространства между частицами этой структуры (которая весьма разрежена в случае любых реальных физических объектов, за исключением нейтронных звезд).
Так как тела дискретны и состоят из точечных объектов — элементарных частиц, то сокращаться должны частицы внутри физической линии, а не сама линия. Таким образом, линия изменит свою толщину.
Полевые связи между частицами изменятся при этом в соответствии с изменением метрики пространства вокруг частиц, в результате чего силы взаимодействия между ними останутся неизменными и линия не разорвется.

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 11:21 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Алия87 в сообщении #236040 писал(а):
А википедия, я так понимаю, выражает взгляды, мнение, идеи, решение не одного единственного человека, а это какая-та общая идея (коллективное решение) некоторого сообщества, раз эта статья не редактируется.

К сожалению, слово "википедия" одно, а значения имеет два. Есть англоязычная википедия, а есть русскоязычная. В русскоязычной всё не так. Там один человек может написать бред, и никто другой его не поправит. А в англоязычной содержание вылизывается намного строже. Получается иногда вполне на уровне учебников.

Цитата:
Для того, чтобы разрешить спор, было проведено неформальное совещание теоретического отдела ЦЕРНа. Белл утверждает, что «ясным общим мнением» отдела стало признание того, что струна не должна разорваться.

В переводе на русский: поспорили в курилке. Какая разница, какое там в результате было "ясное общее мнение"? :-)

 Профиль  
                  
 
 Re: Одновременность
Сообщение18.08.2009, 11:29 
Заслуженный участник


15/05/09
1563
Munin в сообщении #236046 писал(а):
Там один человек может написать бред, и никто другой его не поправит.
Там, к сожалению, бывает еще хуже. Даже хуже, чем на форуме: на форуме можно править лишь свои сообщения (модераторы не в счет), а в Вики - и чужие. Поэтому часто "поправляют" бредящие, а поправки действительно стоящие стираются. Хотя в целом Вики - отличная идея. Как коммунизм... :lol:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 185 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 13  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group