Не ясно о какой преддущей теореме говорите. В предыдущей теореме говориться. что дополнение к множеству первой категории всюду плотно.
Да-да, вот об этой. Объединение
есть всё
, и они замкнуты, значит, хотя бы одно (а значит и все следующие) не может быть нигде не плотным. Только Вы так и не ответили, зачем это доказывать отдельно.
Множества
то конечно замкнуты (хотя и тут не ясность, что они из себя представляют. что это за перечисление:
?). Но поскольку,
могут быть "страшно разрывны", т.е. могут быть всюду плотными, но не замкнутыми и не открытыми множествами, то неравенство
никак не доказано. Т.е. из замкнутости
не следует никак, что
должны содержать внутренность, т.е. хотя бы один открытый интервал, и уж тем более отрезок. А если они и не содержат такого интервала, то нельзя утвержать, что дополнение к
должно быть множеством первой категории.
Нет теорема 4 не верна для всех точек.
Перечитайте теорему 4.
Дак я же почти только что написал, что первоначальная формулировка теоремы требует уточнения, т.е. теорема верна для точек, которые я назвал точками второго рода. Первоначальная формулировка, конечно такая, о которой Вы говорите, но я то утверждаю, что надо поправить её и тогда задача полностью решается.