2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Вопросы по функану
Сообщение10.07.2009, 20:12 
Аватара пользователя
По матану нас учили, что множество называется замкнутым, если оно содержит все свои предельные точки. Точка $\[
a \in \mathbb{R}^n 
\]$ называлась предельной точкой множества $\[
E \subset \mathbb{R}^n 
\]$, если $\[
E \cap \mathop U\limits^ \circ  _\varepsilon  \left( a \right) \ne 0
\]
$ $\[
\forall \varepsilon  > 0
\]
$.

У Колмогорова, множество называется замкнутым, если оно содержит все свои точки прикосновения.
Не могу никак понять, это одно и то же, или нет? Какая связь между точками прикосновения и предельными точками?

 
 
 
 Re: Вопросы по функану
Сообщение10.07.2009, 20:23 
Точка прикосновения -- это или предельная, или изолированная точка множества. Смысл определения от этого не меняется.

 
 
 
 Re: Вопросы по функану
Сообщение10.07.2009, 20:32 
У нас было 4 эквивалентных определения замкнутого множества:
1)$\mathbb{R}^n$/$E$ открыто.
2)$E$ содержит все свои граничные точки.
3)$E$ содержит все свои точки прикосновения.
4)$E$ содержит все свои предельные точки.
На всякий случай напишу определения:
точка x граничная если $\forall\varepsilon\begin{cases}U_{\varepsilon}(x)\bigcap E\neq\oslash\\U_{\varepsilon}(x)\bigcap \mathbb{R}\E\neq\oslash\end{cases}$
x - точка прикосновения если $\forall\varepsilon\quad U_{\varepsilon}(x)\bigcap E\neq\oslash$
определение предельной точки такое же

 
 
 
 Re: Вопросы по функану
Сообщение10.07.2009, 21:05 
ShMaxG
Предельная точка $x$ - если в каждой окрестности есть точка множества, отличная от самой исходной $x$. Значит, в случае хаусдорфовых пространств в любой окрестности будет бесконечного много этих самых точек множества.

Прикосновения - то же самое, но без требования отличности от $x$. Т.е. изолированная точка множества $M$ будет точкой прикосновения, но не будет предельной.

Замыкание можно определить как множество точек прикосновения, это будет то же самое, что $M \bigcup \{M\}$, т.е. само множество и его точки предельные.

У Хаусдорфа в "Теории множеств" и Александрова "Введение в теорию множеств и общую топологию" полнее написано.

 
 
 
 Re: Вопросы по функану
Сообщение10.07.2009, 21:12 
Аватара пользователя
Спасибо, разобрался.

 
 
 
 Re: Вопросы по функану
Сообщение10.07.2009, 21:26 
Аватара пользователя
Вот две ссылки по данной теме:

post215832.html#p215832

topic21315.html

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 15:43 
Аватара пользователя
В лекциях по функану заметил одну фишку.

Замыкание множества $S$ (в топологическом пространстве) вводится как пересечение всех замкнутых множеств, содержащих $S$.
Затем доказывается теорема, что замыкание множества совпадает с множеством всех точек прикосновения.

Далее, секвенциальное замыкание множества вводится как множество всех секвенциальных точек прикосновения.

Просто стало любопытно, а можно ввести секвенциальное замыкание множества $S$ как пересечение всех секвенциально замкнутых множеств, содержащих $S$, а затем доказать теорему, что "секвенциальное замыкание множества - множество всех секвенциальных точек прикосновения"?

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 16:22 
Аватара пользователя
ShMaxG в сообщении #228080 писал(а):
множество всех секвенциальных точек прикосновения

Приведите, пожалуйста, определение секвенциальной точки прикосновения множества.

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 16:33 
Аватара пользователя
Пусть $\[
\left( {X,\tau } \right)
\]
$ - топологическое пространство. Точка $\[
x \in X
\]
$ называется секвенциальной точкой прикосновения множества $\[
S \subset X
\]$, если существует последовательность $\[
\left\{ {x_n } \right\}_{n = 1}^\infty   \subset S:x_n \mathop  \to \limits^\tau  x
\]$ при $\[
n \to \infty 
\]$.

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 16:49 
ShMaxG в сообщении #228080 писал(а):
Просто стало любопытно, а можно ввести секвенциальное замыкание множества $S$ как пересечение всех секвенциально замкнутых множеств, содержащих $S$, а затем доказать теорему, что "секвенциальное замыкание множества - множество всех секвенциальных точек прикосновения"?
Низзя. (Тут есть подсказка.)

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 18:15 
Аватара пользователя
AGu в сообщении #228086 писал(а):
ShMaxG в сообщении #228080 писал(а):
Просто стало любопытно, а можно ввести секвенциальное замыкание множества $S$ как пересечение всех секвенциально замкнутых множеств, содержащих $S$, а затем доказать теорему, что "секвенциальное замыкание множества - множество всех секвенциальных точек прикосновения"?
Низзя. (Тут есть подсказка.)

Уважаемый AGu! Вы, конечно, правы. Но, я нигде не видел ни определения секвенциальной точки прикосновения множества, ни, соответственно, определения секвенциального замыкания множества. Где это можно посмотреть в печатном виде? Я знаю только о секвенциальном пространстве из Энгелькинга и думал, что возиться с понятиями типа «секвенциальное замыкание» не стоит именно из-за этого Вашего «Низзя».

 
 
 
 Re: Вопросы по функану
Сообщение12.07.2009, 20:21 
Аватара пользователя
AGu
Подсказку не нашел... Хотя обратил внимание на
$\[
\left[ {\left[ A \right]_{seq} } \right]_{seq}  \ne \left[ A \right]_{seq} 
\]$.
Правильное направление мыслей?

 
 
 
 Re: Вопросы по функану
Сообщение13.07.2009, 09:06 
Виктор Викторов в сообщении #228098 писал(а):
Но, я нигде не видел ни определения секвенциальной точки прикосновения множества, ни, соответственно, определения секвенциального замыкания множества. Где это можно посмотреть в печатном виде? Я знаю только о секвенциальном пространстве из Энгелькинга и думал, что возиться с понятиями типа «секвенциальное замыкание» не стоит именно из-за этого Вашего «Низзя».
К сожалению, я не знаю книг или статей, содержащих детальное исследование секвенциальных пространств. В Энгелькинге об этом сказано действительно совсем чуток. (Кстати, там есть пример, дающий ответ на вопрос ShMaxG. :-))
ShMaxG в сообщении #228120 писал(а):
обратил внимание на
$\[
\left[ {\left[ A \right]_{seq} } \right]_{seq}  \ne \left[ A \right]_{seq} 
\]$.
Правильное направление мыслей?
Ага. :-)

 
 
 
 Re: Вопросы по функану
Сообщение13.07.2009, 14:54 
Аватара пользователя
Т.е. мне достаточно доказать, что из моего определения будет следовать $\[
\left[ {\left[ A \right]_{seq} } \right]_{seq}  = \left[ A \right]_{seq} 
\]
$ для любого множества $A$.

$\[
\begin{gathered}
  \left[ A \right]_{seq}  = \bigcap\limits_\alpha  {F_\alpha  \left( A \right)}  \hfill \\
  \left[ {\left[ A \right]_{seq} } \right]_{seq}  = \bigcap\limits_{\alpha '} {G_{\alpha '} \left( {\bigcap\limits_\alpha  {F_\alpha  \left( A \right)} } \right)}  \hfill \\ 
\end{gathered} 
\]$

Здесь $\[
{F_\alpha  \left( A \right)}
\]$ означает $\[
F_\alpha   \supset A
\]
$. Аналогично, $\[
G_{\alpha '}  \supset \bigcap\limits_\alpha  {F_\alpha  \left( A \right)} 
\]$

Сами множества $\[
F_\alpha  ,G_{\alpha '} 
\]
$ являются секвенциально замкнутыми (т.е. содержат все свои секвенциальные точки прикосновения).
Если $x$ принадлежит правой части, то она принадлежит и левой - это понятно. А вот как наоборот - не очень. Какие точки могут присоединиться к множеству при его секвенциальном замыкании в смысле моего определения?

 
 
 
 Re: Вопросы по функану
Сообщение13.07.2009, 15:51 
Аватара пользователя
ShMaxG. Каким условиям у Вас удовлетворяет пространство $X$? Если оно с первой аксиомой счётности, то Ваше неравенство превращается в равенство. Контрпример надо искать среди пространств без первой аксиомы счётности. В Колмогорове-Фомине есть пример пространства, для которого замыкание не совпадает с секвенциональным замыканием. Может он Вам поможет.

 
 
 [ Сообщений: 42 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group