maxal писал(а):
Бесконечность количества простых, по модулю которых 2 - первообразный корень, недоказана, и это действительно частный случай гипотезы Артина. Но в данной задаче требуются простые, по модулю которых 2 НЕ является первообразным корнем. Бесконечность количества таких простых можно легко доказать, например, с помощью Zsigmondy Theorem.
Угу. Еще 2 не является первообразным для
, так как
, а простых вида
бесконечно по т.Дирихле. Насчет тех простых, для которых 2 - первообразный, - это я просто так спросил - все равно смежный вопрос.
maxal писал(а):
Sonic86 Представьте, что делитель нуля
зафиксирован и вы ищите для него подходящий со-делитель
, решая систему линейных уравнений по модулю 2. Матрица этой системы - циркулянт размером
, определяемый
, и система будет иметь ненулевое решение, только если определитель этого циркулянта равен 0. А далее - см. по ссылке.
Как все-таки решать? Вот я взял
(только я возьму
с нечетным числом единиц, иначе
, а значит со-делителем будет
, а этот случай мы исключаем, минор в этом случае брать не получится - он не циркулянт, так как
не имеет нетривиального делителя). Беру для него
, строю систему, определитель у меня - циркулянт, по формуле по ссылке он равен норме алгебраического числа
. Можно даже это число разделить на
если охота. Я теперь должен определить, когда циркулянт сравним с 0 по модулю 2 (делится на 2), а когда нет.
если надо. А вот что дальше - ? Я ведь даже не знаю - когда 2 простое в
, а когда - нет (хотя вроде как
- всегда простое, но это доказывать надо). В общем - не знаю, как дальше.
maxal писал(а):
Это в точности те простые , для которых -й круговой многочлен приводим по модулю 2.
Они же простые, для которых 2 не является примитивным корнем.
Это - часть того же доказательства, которое я найти не могу, или - другого?