Я надеюсь, что здесь кто-то знаком с такой проблемой.
Есть краевая задача, состоящая из одномерного уравнения теплопроводности с постоянными коэффициентами, начального условия и 2 граничных условий третьего рода. Задача решается численными методами через схему Кранка-Никелсона (симметричную или повышенной точности).
1) Необходимо исследовать на устойчивость краевую задачу по шагам

и

(по координате и по времени). Я знаю, что хотя симметричная схема или схема повышенного порядка аппроксимации в теории является абсолютно устойчивой по

и

, на устойчивость задачи также влияют краевые условия, и, вроде бы, для краевых условий третьего рода необходим гораздо более тонкий анализ. Знаю, что вроде бы есть методы энергетических неравенств и принцип максимума, но о них услышал буквально несколько дней назад, поэтому разобраться пока не смог. Пожалуйста, скажите, что нужно использовать (желательно со ссылками), чтобы получить критерий для выбора

, чтобы схема была устойчивой?
2) Было замечено, что при определенном соотношении между

и

(

<<

) лучше всего к теоретическому решению (при определенных допущениях) приближается кривая, соответствующая неявной схеме. Как симметричная, так и схема с повышенной точности дают гораздо более плохой результат. Возможно ли такое или это чистое совпадение каких-то потусторонних факторов?