2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 18  След.
 
 
Сообщение18.03.2009, 11:27 


20/07/07
834
Цитата:
Хотите сказать, что не существует множества, удовлетворяющего аксиомам действительных чисел, которому принадлежит возраст Маши?

Если возраст Маши - это множество, то вопросов нет. Если возраст Маши - число, то это предел сходящейся последовательности рациональных чисел. А этого предела, исходя из аксиом задачи, нет.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:29 
Экс-модератор


17/06/06
5004
Nxx, Вас кто-то жестоко обманул. Число, последовательность, ... являются множествами чуть более чем полностью.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:31 


20/07/07
834
Да, но не любое множество является числом.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:33 
Экс-модератор


17/06/06
5004
Итак,
Nxx в сообщении #196181 писал(а):
Если возраст Маши - число
, то, так как Вы сказали
Nxx в сообщении #196183 писал(а):
Да
, то возраст Маши - множество, так что
Nxx в сообщении #196181 писал(а):
вопросов нет
.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:40 
Заслуженный участник
Аватара пользователя


28/09/06
10834
Someone писал(а):
И не докажете. Потому что Ваше определение равносильно моему второму, а про первое мне точно известно, что оно второму (следовательно, и Вашему) не равносильно, если нет аксиомы выбора.

Не буду спорить. Тем более, что мне совершенно безразлично чему равносильно моё определение. Вы ведь не утверждаете, что оно бессмысленно?

Someone писал(а):
Вы так старались обойти слово "множество" или какой-нибудь его заменитель...

Слово "множество" меня совершенно не пугает. Хотя иногда я стараюсь его не употреблять, чтобы у собеседника не создавать впечатление, что я говорю об объекте, определённом ZFC или какой-либо аналогичной теоретико-множественной аксиоматикой. Но конечные совокупности объектов можно называть "множествами", почему бы и нет?

Someone писал(а):
epros в сообщении #195809 писал(а):
В том смысле, что прямо об этом никто не заявил. Вот аксиома бесконечности в теории множеств прямо заявляет, что множество включает всех последователей. Есть такое же прямое утверждение где-то, например, у того же Кушнера?

Что значит - "прямое"?

Вот здесь пример:
Изображение
Там есть часть формулировки, которая читается так: "Последователь любого $b$, принадлежащего $a$, принадлежит $a$". Это и есть "прямое" заявление о том, что все последователи минимального элемента включены во множество.

Someone писал(а):
Термины типа "$\mathbb C$ - множество комплексных чисел" обозначают именно множество всех объектов указанного типа.
Вы Кушнера внимательно читали? Он далее определяет операции и отношения на множестве $\mathscr H$, используя при этом обозначения вида $\mathop{+}\limits_{\mathscr H}$. Что, по Вашему мнению, у него получилось бы, если бы $\mathscr H$ включало не все натуральные числа?
Вы в курсе, что высказывания со свободными переменными трактуются так, будто по всем свободным переменным имеются кванторы всеобщности?
Что, по Вашему мнению, означает утверждение
"каковы бы ни были натуральные числа $m$, $n$, имеет место $(m\mathop{=}\limits_{\mathscr H}n)\vee(m\mathop{>}\limits_{\mathscr H}n)\vee(m\mathop{<}\limits_{\mathscr H}n)$",
если не
"$\forall m\forall n(((m\in\mathscr H)\&(n\in\mathscr H))\Rightarrow((m\mathop{=}\limits_{\mathscr H}n)\vee(m\mathop{>}\limits_{\mathscr H}n)\vee(m\mathop{<}\limits_{\mathscr H}n)))$"?

Это всё не имеет отношения к вопросу, ибо является интерпретациями. Я точно так же могу интерпретировать все эти слова и выражения таким образом, что речь идёт о конечных множествах, которые "дополняются" по мере необходимости.


Someone писал(а):
epros в сообщении #195809 писал(а):
Someone писал(а):
epros писал(а):
Я могу говорить о каких-то совокупностях натуральных чисел, даже называть их "множествами" и обозначать специальными буквами. Но это не значит, что я утверждаю, что существует множество, включающее их все.

"Их" - это кого? Множества или натуральные числа?

Совокупности натуральных чисел.

Пока никто, кроме Вас, не говорил о множестве совокупностей натуральных чисел.

Я понял так, что Ваш вопрос: "Их" - это кого?, - относился к моему: ... даже называть их "множествами" и обозначать специальными буквами.

Здесь "их" - это "совокупности натуральных чисел". И я готов называть их "множествами", подразумевая при этом, что речь идёт о конечных совокупностях.

Во втором предложении, естественно, речь шла о натуральных числах. Т.е.: Это не значит, что я утверждаю, что существует множество, включающее все натуральные числа.

Someone писал(а):
Я так и не смог понять из Ваших слов, ни что такое "актуальная бесконечность" (не повторяйте, пожалуйста, своё "определение", оно никакой "актуальности" не определяет), ни чем она хуже "потенциальной" (которую тоже следовало бы определить).

Я не говорю что она "хуже". Я говорю, что речь идёт о разных утверждениях, причём одно к другому не сводится. Соответственно, принять одно - конструктивно, а другое - нет.

Someone писал(а):
Пока, вроде бы, прояснилось, что "актуально бесконечное" множество содержит все свои элементы, а "потенциально бесконечное" - не все. Или я Вас не так понял?

Как-то станно Вы выразились: содержит все "свои" элементы. Подразумевается, что для любой совокупности натуральных чисел любое натуральное число автоматически будет "своим"?

Я не верю, что Вы не поняли, о чём я говорю. Совокупности натуральных чисел "существуют", никто против этого не возражает. Мы всегда можем собрать такую совокупность натуральных чисел, в которую войдёт любое заранее заданное число (или даже "все числа меньше него"). Не существует такой конечной совокупности, которая включала бы все натуральные числа (это утверждение о потенциальной бесконечности типа натуральных чисел). Но я не утверждаю, что существует совокупность, включающая все натуральные числа. Заметьте, "не утверждаю" не означает "утверждаю, что это не так".

Someone писал(а):
epros в сообщении #195809 писал(а):
Мы рассматривали не такой случай, когда очередной шаг перебирающего алгоритма может оказаться неразрешимым. Эту возможность Вы сами домыслили.

Насколько я помню, явно это предположение не формулировалось. В данном случае я хотел на примере конечного множества смоделировать ситуацию, которая более естественно возникает в случае бесконечного множества.

Когда из того, что объектов $x$ конечное количество, делается вывод, что алгоритм проверки $(\forall x)(P(x))$ закончится, то это только потому, что предикат $P(x)$ изначально рассматривался как разрешимый для любого $x$.

Someone писал(а):
epros в сообщении #195809 писал(а):
Вы исходите из того, что перебирающий "будет ждать" пока не наберётся ровно 100 штук, а поэтому если их меньше, то не дождётся.

Видите ли, по условию известно только, что объектов не более $100$, поэтому, пока мы $100$ штук не набрали, у нас нет оснований остановить перебор.

Конструктивно доказанное утверждение о конечности некой совокупности объектов автоматически подразумевает, что существует способ определения того, когда наступит этот "конец". Вот если у нас есть неконструктивно заданное "условие", тогда другое дело.

Someone писал(а):
epros в сообщении #195809 писал(а):
Но очевидно, что разумные условия перебора не могут быть таковыми. Когда перебор закончится и в ящике не останется больше предметов, алгоритм остановится и об этом нам станет известно.

Не почему же "не могут"? Очень легко могут. Представьте себе, что наш "ящик" представляет собой растущий лабиринт...

Если у меня нет гарантий того, что я в любой момент могу определить, что ящик пуст, то я не считаю такие условия перебора объектов в ящике "разумными". Скажем, если мне скажут, что на очередном шаге мне могут просто не открыть ящик, и отправят меня искать ключ в тридесятое царство, то я на таких условиях перебирать предметы в нём не возьмусь. :)

Someone писал(а):
Почему Вы думаете, что конструктивное доказательство обязательно должно давать точное количество объектов?

Если оно доказывает, что объектов конечное количество, то процедура перебора заведомо конечна, а в её конце мы будем знать и количество объектов (заранее, конечно, можем и не знать). Иначе это просто не есть конструктивное доказательство.

Например, я не знаю, сколько элементов в последовательности Гудстейна, начинающейся с числа 65537. Но я знаю, что их конечное количество, а это значит, что по завершении процедуры, вычисляющей элементы этой последовательности, мы будем это количество знать.

Someone писал(а):
Предположим, что нас интересуют не просто совершенные числа. У нас есть некоторое число $N$, и нас для каждого $R\in\{0,1,2,3,\ldots,N-1\}$ интересует наименьшее совершенное число, которое при делении на $N$ даёт остаток $R$. Здесь прямо из определения видно, что найти требуется не более $N$ чисел. Какие у Вас гарантии, что их действительно столько найдётся? Чего здесь неконструктивного? (Пример, конечно, условный.)

Здесь у меня нет доказательства того, что найдётся очередное совершеное число, которое при делении на $N$ даст остаток $R$. Поэтому у меня нет конструктивного доказательства того, что таких чисел конечное количество. Но согласно определению их количество не может быть бесконечным. Вы придумали очередной замечательный пример неснимаемого двойного отрицания. :)

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:48 


20/07/07
834
AD писал(а):
Итак,
Nxx в сообщении #196181 писал(а):
Если возраст Маши - число
, то, так как Вы сказали
Nxx в сообщении #196183 писал(а):
Да
, то возраст Маши - множество, так что
Nxx в сообщении #196181 писал(а):
вопросов нет
.


Это означает, что если возраст Маши - не число, то вопросов нет. Числом возраст Маши быть не может, так как не удовлетворяет определению действительного числа.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:54 
Экс-модератор


17/06/06
5004
Nxx в сообщении #196192 писал(а):
Это означает, что если возраст Маши - не число, то вопросов нет.
А если возраст Маши - число, то тем более вопросов нет, так как тогда возраст Маши - множество. То есть доказано, что вопросов нет.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:56 


20/07/07
834
AD писал(а):
Nxx в сообщении #196192 писал(а):
Это означает, что если возраст Маши - не число, то вопросов нет.
А если возраст Маши - число, то тем более вопросов нет, так как тогда возраст Маши - множество. То есть доказано, что вопросов нет.


Возраст Маши числом быть не может.

 Профиль  
                  
 
 
Сообщение18.03.2009, 11:59 
Экс-модератор


17/06/06
5004
Nxx в сообщении #196195 писал(а):
Возраст Маши числом быть не может.
Ну и следовательно вопросов нет.

Добавлено спустя 1 минуту 23 секунды:

А я вот утверждаю, что возраст Маши является элементом некоторого множества действительных чисел в смысле аксиоматического определения.

 Профиль  
                  
 
 
Сообщение18.03.2009, 12:02 


20/07/07
834
AD писал(а):
Nxx в сообщении #196195 писал(а):
Возраст Маши числом быть не может.
Ну и следовательно вопросов нет.


Я не понимаю, вам что, каждую фразу расшифровывать как маленькому рембенку на полстраницы? Полностью смысл моей фразы был такой: "ЕСЛИ ДОПУСТИТЬ, ЧТО ВОЗРАСТ МАШИ МОЖЕТ БЫТЬ НЕ ЧИСЛОМ, А МНОЖЕСТВОМ, СОСТОЯЩИМ ИЗ НЕСКОЛЬКИХ ЧИСЕЛ, ТО ВОПРОСОВ НЕТ, ТАК КАК ВОЗРАСТ МАШИ ЧИСЛОМ БЫТЬ НЕ МОЖЕТ". А вы со мной в коламбуры играете, не стыдно?

 Профиль  
                  
 
 
Сообщение18.03.2009, 12:31 
Заслуженный участник


11/05/08
32166
Nxx в сообщении #196198 писал(а):
ЕСЛИ ДОПУСТИТЬ, ЧТО ВОЗРАСТ МАШИ МОЖЕТ БЫТЬ НЕ ЧИСЛОМ, А МНОЖЕСТВОМ, СОСТОЯЩИМ ИЗ НЕСКОЛЬКИХ ЧИСЕЛ,

А зачем допускать? Это аксиома: возраст Маши всегда представляет собой некое множество, состоящее из нескольких чисел. Это ведь не Миша.

 Профиль  
                  
 
 
Сообщение18.03.2009, 12:38 
Экс-модератор


17/06/06
5004
Nxx в сообщении #196198 писал(а):
А МНОЖЕСТВОМ, СОСТОЯЩИМ ИЗ НЕСКОЛЬКИХ ЧИСЕЛ
Мне лично воображения не хватило такой бред предположить.

Добавлено спустя 1 минуту 56 секунд:

Nxx в сообщении #196198 писал(а):
А вы со мной в коламбуры играете, не стыдно?
Ну извините, ну если подставляетесь так ... Математика - это игра в буковки. Поэтому Вас поймут в точности так, как Вы написали. Привыкайте уже. Так что переадресую ВАМ обвинение в незрелости.

 Профиль  
                  
 
 
Сообщение18.03.2009, 13:29 
Заслуженный участник
Аватара пользователя


28/09/06
10834
Nxx писал(а):
Возраст Маши числом быть не может.

Примем по определению, что "возраст Маши" - это вектор Банахова пространства. :)

 Профиль  
                  
 
 
Сообщение18.03.2009, 13:36 


20/07/07
834
epros писал(а):
Nxx писал(а):
Возраст Маши числом быть не может.

Примем по определению, что "возраст Маши" - это вектор Банахова пространства. :)


В таком случае и муж - тоже вектор.

 Профиль  
                  
 
 
Сообщение18.03.2009, 13:44 
Заслуженный участник
Аватара пользователя


28/09/06
10834
Nxx писал(а):
epros писал(а):
Nxx писал(а):
Возраст Маши числом быть не может.

Примем по определению, что "возраст Маши" - это вектор Банахова пространства. :)

В таком случае и муж - тоже вектор.

Не-ее, муж - это квантовая суперпозиция из мужиков: "полу-Вася, полу-Коля". :)

Это ведь не я придумал измерять возраст "не числом", а Вы. В моей постановке задачи возраст измерялся натуральным числом лет.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 261 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 18  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group