2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Differential operator and Fourier Transform
Сообщение25.04.2006, 22:49 


17/04/06
256
Could anyone help?!

I have nonzero differential operator with constant coefficients $$Tf=\sum_{i=0}^{n} a_iD^if$$. It acts on the space of smooth functions vanishing at infinity (over the real line - for simplicity, the problem could be also stated for partial differential operator). I need to show that Tf = 0 => f=0. There is a hint to use Fourier Transform. I have no idea how to use the hint.

Any input is greatly appreciated!

Spasibo

 Профиль  
                  
 
 
Сообщение25.04.2006, 23:36 
Заслуженный участник
Аватара пользователя


17/10/05
3709
:evil:
Apply FT to the $T f$. You should be able to calculate it explicitly thru $F$ (FT of $f$). Compare your result with FT of 0.

 Профиль  
                  
 
 Ogromnoe spasibo!
Сообщение26.04.2006, 00:32 


17/04/06
256
незванный гость писал(а):
:evil:
Apply FT to the $T f$. You should be able to calculate it explicitly thru $F$ (FT of $f$). Compare your result with FT of 0.


I am not totally familiar with notation. What does capital $F$ in the following expression mean $F$ (FT of $f$) ?

I tried to computer FT of the $Tf$. Well, for the first derivative I can apply integration by parts, to get at least something, but this trick does not work for the second derivative. (since $f'$ might not be vanishing at infinity)

In addition, FT of $f$ might not even exist by itself.

 Профиль  
                  
 
 
Сообщение26.04.2006, 04:39 
Заслуженный участник
Аватара пользователя


17/10/05
3709
:evil:
Bridgeport писал(а):
I am not totally familiar with notation. What does capital $F$ in the following expression mean $F$ (FT of $f$) ?

$F$ here is result of the Fourier Transform applied to $f$ (I tried to clarify it by phrase in parenthesis).

I'd like to think on the rest of your questions. The solutions for $ T f = 0 $ are well know linear combinations of compex exponents, but known of them can be said to vanish at infinity.

 Профиль  
                  
 
 Schwars Class vs. infinitely differentiable vanishing at inf
Сообщение26.04.2006, 14:55 


17/04/06
256
Thank you for the clarifications!

I also want to add that problem would be much easier if our class of functions was Schwars class (i.e. vanishing faster than any polynomial )or $L^2 $, but in case of infinitely differentiable vanishing at infinity $C_0^\infty $ I cannot get differentiation by parts to work on the second and higher order derivatives to get relations between FT and derivatives. But even if I could, I still don't see the way how to proceed futher.

Spasibo!

 Профиль  
                  
 
 Re: Schwars Class vs. infinitely differentiable vanishing at
Сообщение30.04.2006, 12:33 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Bridgeport писал(а):
Thank you for the clarifications!

I also want to add that problem would be much easier if our class of functions was Schwars class (i.e. vanishing faster than any polynomial )or $L^2 $, but in case of infinitely differentiable vanishing at infinity $C_0^\infty $ I cannot get differentiation by parts to work on the second and higher order derivatives to get relations between FT and derivatives. But even if I could, I still don't see the way how to proceed futher.

Spasibo!

You must remember that a function in $C_0^\infty $ has all derivatives in the same class. Therefore you can apply Fourier to all derivatives and integrate by parts to get
$F(\sum C_k (d/dx)^k u)(\xi)=\sum(C_k (i\xi)^k)(Fu)(\xi)$
If this is zero, so $(Fu)(\xi)$ must be zero everywhere where the polynomial $\sum(C_k (i\xi)^k)$ is not zero. This means that $(Fu)(\xi)$
is zero everywhere with exception of a finite set of points, and a smooth function can be such only if it is zero.

 Профиль  
                  
 
 Final question
Сообщение01.05.2006, 15:19 


17/04/06
256
Ogromnoe spasibo!

Here is one more question. We have that $(Fu)(\xi)$ is a smooth function, which is zero everywhere. How can I use it to conclude that $u(x)$ is zero function? That was my originaly problem.

 Профиль  
                  
 
 
Сообщение01.05.2006, 15:41 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Apply the inverse Fourier.
$F^{-1}F u=u,\; F^{-1}(0)=0$

 Профиль  
                  
 
 Fourier Inverse
Сообщение01.05.2006, 16:29 


17/04/06
256
So far, I only know that fourier inverse is going to return original function, only in Schwars class and in $L^2$, (since Schwars class in dense in $L^2$). Do you think it is possible to get: $\hat{u}\check\ = u$, if $u \in C^\infty_0$?

 Профиль  
                  
 
 
Сообщение01.05.2006, 16:58 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Think a little and you find that $C_0^\infty\subset\mathcal{S}$ (Schwartz)

 Профиль  
                  
 
 Definitions
Сообщение01.05.2006, 17:22 


17/04/06
256
I guess my definition of Schwartz class is slighly different http://en.wikipedia.org/wiki/Schwartz_space
(functions and their derivatives in Schwartz class decrease rapidly to zero)


I would rather have:$\mathcal{S}\subset C_0^\infty\ $

 Профиль  
                  
 
 
Сообщение01.05.2006, 17:38 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Write the condition of tending to zero as an inequality and check that the functions with compact support satisfy this inequality.
How do you understand
$C_0^\infty$??????

 Профиль  
                  
 
 
Сообщение01.05.2006, 17:47 


17/04/06
256
$C^\infty_0 $ - I understand as vanishing at infinity, not as compactly supported.

$C^\infty_c $ - is compactly supported.

 Профиль  
                  
 
 
Сообщение01.05.2006, 18:06 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
In this case you contradict the usual notations.
what does 'vanishing at infty 'mean, exactly!!

 Профиль  
                  
 
 You are probably right
Сообщение01.05.2006, 18:13 


17/04/06
256
Here is definition that I use:

http://en.wikipedia.org/wiki/Vanish_at_infinity

The same defition and notation is used in Rudin "Real and Complex Analysis"

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group