2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение01.05.2006, 21:00 
Аватара пользователя
Well, in this case, you have to consider your $u$ as a distribution 
and apply everything , i.e., Fourier and diff. operator in the sense of distributions (in $\mathcal{S}'$). The same reasoning will give that the distribution $\hat{u}$ has support in the set of zeros of the polynomial.
such distribution has to be a collection of derivatives of $\delta$ distributions centred at the zeros of the polynomial, therefore, applying the inverse Fourier, again in the distributional sense, you get that $u$ is a  collection of polynomials times exponents. Such functions do not tend to zero at infty.

 
 
 [ Сообщений: 16 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group