Someone писал(а):
Почему неразличимые? Вполне себе различимые. Один раз приписали к строке
палочку - получили один результат. Другой раз проделали то же самое - получили другой результат.
Каким же образом? a+"|" = a+"|" уже потому, что равенство строк определяется посимвольным сравнением, а раз a=a, то как могут возникнуть "разные результаты" мне просто непонятно.
Someone писал(а):
Вы, конечно, ведёте себя подобно другим интуиционистам. Они заявляют о достигнутом ими уровне строгости, совершенно недоступном и даже невообразимом для тех, кто занимается классической математикой, и тут же объявляют, что не желают как либо формализовать применяемые средства доказательства, считая допустимым использовать всё, что им кажется "интуитивно убедительным".
Ну нет. Во-первых, я говорю не о "невообразимом" уровне строгости, а просто о предварительно оговоренном. Во-вторых, касательно "интуитивной убедительности" я с интуиционистами как раз расхожусь. Я считаю возможным признавать очевидными только те вещи, которые лежат глубже того самого предварительно оговоренного уровня строгости.
Someone писал(а):
В данном случае Вы наверняка держите в голове модель строки в виде последовательности символов и представляете себе приписывание символа как "добавление символа после последнего элемента". Однако такая модель требует весьма развитых представлений о натуральных числах и натуральном ряде как совокупности всех натуральных чисел.
Не стану с Вами спорить, что я "держу в голове модель строки в виде последовательности символов". Но, как я уже говорил, это всё относится к тому уровню строгости, который лежит глубже предварительно оговоренного как "заведомо достаточный". Поскольку я не могу себе представить, чтобы с кем-то могли возникнуть реальные разногласия относительно того, в чём заключается операция добавления символа в конец строки, то и дальнейшее углубление формализации полагаю не имеющим смысла.
Опять же, не стану с Вами спорить, что "такая модель требует весьма развитых представлений о натуральных числах". Но поскольку эти представления являются частью представлений о строках и операциях с ними, то они лежат глубже оговоренного уровня строгости.
Что касается представлений о "натуральном ряде как совокупности всех натуральных чисел", то тут я с Вами не согласен. Из представлений о том, что такое строки, не следует никаких представлений о том, что такое "совокупность всех строк" или "совокупность всех строк определённого вида".
Someone писал(а):
Тем не менее, если Вы явно не сформулируете аксиому, что приписываие символа даёт всегда однозначный результат, то однозначности и не будет.
Не понял, что мешает нам сформулировать такую аксиому, раз это относится к сфере наших базовых представлений о строках?
Someone писал(а):
Зная, что мы можем получить всякую строку палочек приписыванием по одной палочке, мы не можем утверждать, что это утверждение относится к арифметике.
Не сформулировав явно в виде аксиомы, что любую строку можно получить последовательным приписыванием (по одному символу) к пустой строке (или, если Вы не хотите рассматривать пустую строку - к односимвольным строкам), Вы это доказать не сможете, несмотря ни на какую "интуитивную убедительность".
Ну так сформулируем. Как часть аксиоматики Пеано, следующую из наших базовых представлений о строках.
Someone писал(а):
А это и есть аксиома индукции, причём, в первоначальном теоретико-множественном варианте.
Я не возражаю против того, что в этом заложены представления об индукции. Но я не понял, в чём тут их "теоретико-множественный вариант".
Someone писал(а):
Если же Вы не захотите впутывать в это дело теорию множеств и сформулируете схему аксиом индукции, то "вылезут" нестандартные модели (даже несчётные), которые, честно говоря, противоречат моим интуитивным представлениям о натуральном ряде. А нестандартные модели натурального ряда порождают такие же нестандартные модели вычислительного процесса.
М-мм. Это я как-то пока не осмыслил.
Someone писал(а):
Ну, Вы, кажется, утверждали, что только такая теорема и есть.
Гёдель об этом говорит (в указанном сборнике - на странице 9), но в доказательстве никак не использует и в формулировку теоремы не включает. Вероятно, потому, что истинность предполагает некоторую (стандартную) интерпретацию теории с определёнными свойствами.
Цитата:
From the remark that
usserts its own unprovability it follows immediately that
is true, since
is indeed unprovable (because it is undecidable).
Ну так вывод какой? Можно утверждать, что существует
, не только неразрешимое, но и "истинное", или Гёдель это сгоряча брякнул и теоремы из этого не получится?
Добавлено спустя 2 часа 4 минуты 2 секунды:маткиб писал(а):
epros писал(а):
маткиб писал(а):
Во-первых, мы не только должны довести формализацию до такого уровня, но и объяснить пользователю, что означают (какое отношение они имеют к объективной реальности) эти строки символов, и чтобы пользователь понял это однозначно.
Не согласен. Как я уже говорил, не нужно смешивать математику с вопросами её применения (т.е. с тем, какое отношение имеют её утверждения к тем или иным "фактам реальности"). Математика оперирует только символами, а не их "физическим смыслом".
Математика не оперирует с физическим смыслом, но зато оперирует с математическим. Строки символов должны быть не просто взятыми с потолка, а отражать свойства некоторого созданного в мышлении мира вымышленных сущностей.
Выше Вы говорили об отношении к "объективной реальности", а теперь - об отношении к "миру вымышленных сущностей", с чем я в ещё большей степени не согласен. Конечно же строки не нужно брать "с потолка". Приоритет в развитии должны получать те теории, у которых более очевидны перспективы применения. Но это не отменяет того факта, что математика оперирует символами, а не "смыслом" ("физический" он или "математический"). Хотя, возможно, что под "смыслом" Вы здесь как раз и понимаете предполагаемые перспективы применения (против чего у меня нет возражений).
маткиб писал(а):
epros писал(а):
Например, в математике достаточно продемонстрировать (доказать), что натуральные числа (в частности, понимаемые как строки вертикальных чёрточек) обладают соответствующими свойствами, а уж вопрос проявления этого свойства при работе с теми или иными физическими объектами касается применения теории, т.е. не относится к математике.
Вот именно, что нужно доказать, что
натуральные числа обладают некоторыми свойствами, либо сформулировать таковые свойства в виде аксиом, но ни в коем случае не выписать набор аксиом произвольно, и выводить из них следствия.
Я не уловил разницы между "сформулировать свойства в виде аксиом" и "выписать набор аксиом произвольно". Я совершенно согласен, что аксиомы не должны вводиться "произвольно". Соответствующие свойства рассматриваемых математических объектов должны либо непосредственно следовать из наших базовых представлений о математических объектах (коими по моим понятиям являются строки символов), либо должны быть мета-выводимыми для соответствующего типа объектов, которые рассматриваются в рамках соответствующей частной теории.
маткиб писал(а):
epros писал(а):
Что Вы имеете в виду под "адекватностью" формализации?
Под адекватностью я понимаю её соответствие тому миру
вымышленных сущностей, который мы с помощью этой формализации собираемся описать.
Насколько я понял, "мир вымышленных сущностей" неформализуем, а стало быть Ваше понятие об адекватности также неформализуемо. И это было бы ничего, если бы понятие "адекватности" было общеочевидным (подобно понятию о строке символов). Но так ведь нет же: я на 99% уверен, что практически у всех, включая математиков, специализирующихся в одной и той же области, представления об этом весьма различны.
маткиб писал(а):
Например, увидев Ваше определение через вертикальные палочки нормальный человек начинает понимать, что такое натуральное число (причём разные люди одинаково), но из этого Вашего опредедения практически никаких свойств этих чисел не следует, эти свойства люди придумывают уже после, и выписывают их в виде аксиом.
Как это не следует? То, что добавлением чёрточки к строке чёрточек мы получим строку чёрточек,
следует из наших базовых представлений о строках. Остаётся только зафиксировать это в форме аксиомы. Тут ничего не нужно "придумывать": базовые представления уже существуют и они очевидным образом одинаковы у всех.
маткиб писал(а):
Некоторые свойства очень даже нетривиальные. Например, аксиоматику ZFC можно переписать как аксиоматику натуральных чисел. Я категорически не согласен с тем, что задача выдумывания таких аксиом не относится к математике.
Нетривиальные свойства с моей точки зрения следует доказывать, а не "выдумывать" и сразу после этого закладывать в аксиоматику. Если Вы хотите создать частную теорию, оперирующую объектами только определённого типа (т.е. обладающими определёнными свойствами), то Вы, конечно, можете заложить соответствующие свойства в аксиоматику этой частной теории, но если Вы не хотите, чтобы это была теория ни о чём, то неплохо было бы для начала доказать (в метатеории) , что объекты с такими свойствами
существуют.
маткиб писал(а):
Они выполняются для натуральных чисел, но я не согласен с тем, что они выполняются непосредственно. Никакой непосредственности тут нет. Аксиомы Пеано - это результат длительного размышления математиков о натуральных числах. Вот, допустим, Вы видите только Ваше определение через вертикальные чёрточки. Как из этого определения Вы получили аксиомы Пеано? Или это, по-Вашему, не относится к математике?
Непосредственно следуют из базовых представлений о строках. Результатом длительного размышления математиков является то, что аксиоматики Пеано достаточно для построения всей арифметики. А то, что строки чёрточек удовлетворяют таким-то свойствам, как я полагаю, можно было спросить и у древнего предка Халдеев, и он бы дал такой же ответ, как любой современный человек.
маткиб писал(а):
Как, по-Вашему, из Вашего определения получить следующее:
1) Догадаться, что можно на строках вертикальных палочек ввести сложение, умножение и предикат равенства?
Сложение и умножение вводятся для операций со строками чёрточек, очевидно, в точности таким же образом, как и для "абстрактной арифметики", определяемой аксиомами Пеано.
Равенство для строк уже введено, здесь ничего добавлять не нужно.
маткиб писал(а):
2) Догадаться, что для сложения и умножения выполняются аксиомы Пеано (кроме индукции)?
Я не понял, что Вы имеете в виду. Аксиомы Пеано вроде бы не про сложение и умножение. Сложение и умножение определяются через операцию инкремента и, естественно, по этой причине никак нарушить аксиомы Пеано не могут.
маткиб писал(а):
3) Догадаться, что выполняется аксиома индукции
, где P - любая
формула первого порядка с функциональными символами сложения, умножения, прибавления единицы и предикатом равенства?
То, что выполняется аксиома индукции, догадаться можно только с привлечением того, что у конструктивистов называется "абстракция потенциальной осуществимости" (или "реализуемости"). Это представление о том, что не смотря на технические ограничения "в принципе" можно составить любую строку. Оно тоже относится к базовым представлениям (как и всё, касающееся операций со строками).
маткиб писал(а):
Между прочим, расширив язык для P, мы можем сильно увеличить возможности аксиоматики по доказательству теорем (в том числе, записанных в старом языке). Кстати, из-за неочевидности (неконструктивности) этой схемы индукции, часто рассматривают её ограниченные варианты, например, такие, в которых P имеет вид
, где
- бескванторная формула.
Если подумать, то можно аксиоматику сформулировать как теорию о натуральных числах и множествах натуральных чисел, тогда она будет значительно сильнее аксиоматики Пеано, в частности, позволять доказывать свойства натуральных чисел, которые можно сформулировать, но нельзя доказать в арифметике Пеано. Или же можно подумать и догадаться, что схема аксиом
тоже является свойством
строк вертикальных палочек. Добавив её, мы получим возможность не расширяя языка доказывать всё то (из того, что можно в этом языке сформулировать), что доказуемо в ZFC, и даже чуть-чуть больше, а это значительно расширяет арифметику Пеано.
Я не вполне понял о чём Вы здесь.
маткиб писал(а):
Но как это следует из Вашего определения на основе палочек, ума не приложу.
Полагаю, что ровно таким же образом, как это должно (или не должно?) следовать из аксиоматики Пеано самой по себе.
маткиб писал(а):
Множество можно считать таким же базовым понятием, как Ваши строки вертикальных палочек (если особо не заморачиваться).
Что значит "не особо заморачиваться"? Т.е. не задавать вопросов типа: "Существует ли множество всех натуральных чисел?", "множество всех множеств натуральных чисел?", "множество вообще всех множеств?".
Никто ведь не запрещает задаваться вопросами про любые свойства натуральных чисел (определённых как строки чёрточек). Вряд ли ответы на такие вопросы приведут к такому расширению понятия натурального числа, которое потребует добавления
взятых с потолка аксиом.
маткиб писал(а):
А никто и не просит это значение находить, достаточно только дать ему определение.
Правильно ли я понял, что это определение будет звучать примерно так:
"Истинность - это элемент множества из двух элементов"?
Не понимаю, какая от этого определения польза.
маткиб писал(а):
Если множество вообще - это сложное понятие (в принципе, я с этим согласен), то можно рассматривать множества натуральных чисел, которые настолько же очевидны, насколько сами числа (строки палочек). На основе множеств натуральных чисел без проблем можно строго определить понятие истинности в языке арифметики первого порядка.
Не согласен, что "множество натуральных чисел" столь же очевидно, как и само понятие натурального числа. Принципиальная возможность построить любую строку из чёрточек - очевидна. Но возможность построить совокупность
всех строк из чёрточек - совсем не очевидна.
маткиб писал(а):
Аксиомы не берутся с потолка, они всегда являются следствием попытки описать некоторый вымышленный мир. Бывали, конечно, случаи, когда аксиомы придумывались без достаточно ясного представления об объекте, который нужно было описать, тогда и получались "парадоксы Рассела". Но это скорее указание на то, что не нужно пытаться описывать аксиомами "то, не знаю что".
"Попытаться описать вымышленный мир" и "придумать (взять с потолка) аксиому (о свойствах объектов вымышленного мира)" - с моей точки зрения это одно и то же.
маткиб писал(а):
Само по себе оно, конечно, бессодержательно. Но если, например, предикат истинности в арифметике мы добавим в арифметику Пеано (вместе с некоторыми очевидными аксиомами), то у нас появятся новые возможности для доказательства, с помощью которых мы сможем доказать новые утверждения в том числе и в старом языке (без предиката истинности). То есть говорить о практической ненужности пока преждевременно.
Я не вполне понял о чём Вы здесь. Может быть о том, что можно мета-доказать некоторые утверждения, недоказуемые в арифметике, и далее - мета-мета-доказать некоторые утверждения, недоказуемые уже в мета-арифметике? Так это пожалуйста. Я даже не возражаю против того, чтобы доказанные таким образом утверждения включались в аксиомактику теории, т.е. расширяли аксиомы Пеано. Но что-то мне не верится, чтобы таким образом, т.е. не добавляя взятых с потолка аксиом, можно было получить ZFC.