2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 15:06 


05/09/16
12203
Внутри равностороннего треугольника выбрали точку. От этой точки провели три отрезка к вершинам треугольника. Оказалось, что сумма квадратов длин двух отрезков равна квадрату длины третьего.
Найти угол между двумя меньшими отрезками.
Изображение
См. рисунок, найти угол $\varphi$

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 16:45 
Заслуженный участник


20/12/10
9148
Ставлю на 150 градусов.

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 16:49 


05/09/16
12203
Бонус-вопрос: найти ГМТ точки $K$

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 16:51 
Заслуженный участник


20/12/10
9148
Если моя гипотеза верна, то ответ очевиден --- дуга соответствующей окружности.

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 17:50 
Заслуженный участник
Аватара пользователя


23/08/07
5501
Нов-ск
Между двумя наименьшими отрезками два угла - $30$ и $150$ градусов.
Точку можно выбирать внутри и можно снаружи.

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 19:25 
Заслуженный участник
Аватара пользователя


01/08/06
3143
Уфа
В принципе, координатный метод приводит к результату, до которого уже догадались.
Но это как-то неспортивно.
Есть ли красивое геометрическое решение?

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 20:49 
Заслуженный участник
Аватара пользователя


26/02/14
589
so dna
Есть алгебраическое решение

$\begin{cases} 
a^2+c^2-2ac\cos\alpha=d^2\\ 
b^2+c^2-2bc\cos\beta=d^2\\ 
a^2+b^2-2ab\cos\varphi=d^2\\
a^2+b^2=c^2
\end{cases}\Rightarrow\begin{cases} 
a^2-2ac\cos\alpha+2ab\cos\varphi=0\\ 
b^2-2bc\cos\beta+2ab\cos\varphi=0
\end{cases}\Rightarrow\begin{cases} 
\cos\alpha=\dfrac{a+2b\cos\varphi}{2c}\\ 
\cos\beta=\dfrac{b+2a\cos\varphi}{2c}
\end{cases}$

$x=\cos\varphi=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\dfrac{(a+2bx)(b+2ax)}{4c^2}-\dfrac{\sqrt{\bigl(4c^2-(a+2bx)^2\bigr)\bigl(4c^2-(b+2ax)^2\bigr)}}{4c^2}$

откуда, учитывая $a^2+b^2=c^2$

$\bigl(2abx-b^2-a^2\bigr)\bigl(4x^2-3\bigr)=0$

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 21:00 


05/09/16
12203
worm2 в сообщении #1660431 писал(а):
Есть ли красивое геометрическое решение?

Ещё как есть! 8-)

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение02.11.2024, 21:56 
Заслуженный участник


20/04/10
1909
Нужно вырезать треугольник со сторонами $a,b$ и приложить его к треугольнику со сторонами $b,c$, совместить равные стороны исходного равностороннего треугольника. Заметить, что полученный четырёхугольник будет состоять из прямоугольного треугольника и равностороннего со стороной $b$.

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение03.11.2024, 08:09 


05/09/16
12203
lel0lel
Да, или просто повернуть исходный треугольник вокруг одной из вершин куда проведены меньшие отрезки.

Видеорешение: https://rutube.ru/video/87eb74cf00abada ... 5b5c0c33b/

Скриншот из видеорешения (повернули вокруг вершины, в которую проведён $a$ ):
Изображение

Ну и вот ответ на
wrest в сообщении #1660423 писал(а):
Бонус-вопрос: найти ГМТ точки $K$


Изображение

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение03.11.2024, 08:36 
Заслуженный участник
Аватара пользователя


26/02/14
589
so dna
:appl:

 Профиль  
                  
 
 Re: Прямоугольный треугольник в равностороннем
Сообщение03.11.2024, 08:59 


05/09/16
12203
Ну естественно, отсюда видно, что и градусные меры двух других углов между отрезками $a,b,c$ представляют из себя сумму 60 градусов и градусной меры острых углов прямоугольного треугольника, который можно составить из отрезков $a,b,c$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group