2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Раскраска куба в три цвета
Сообщение01.11.2024, 10:17 


20/02/20
83
Здравствуйте! Коллеги,помогите найти элементарное решение следующей задачи.Сколько различных раскрасок граней куба в 3 цвета(две раскраски считаются различными,если они не могут быть совмещены путем вращения куба)? Задача легко решается с помощью формулы Бернсайда из теории конечных групп(см.Винберг "Курс алгебры"). Где-то я видел элементарное решение для школьников,но не могу вспомнить.

 Профиль  
                  
 
 Re: Раскраска куба в три цвета
Сообщение01.11.2024, 10:45 
Аватара пользователя


01/11/14
1946
Principality of Galilee
Эта задача уже решалась на форуме.

 Профиль  
                  
 
 Re: Раскраска куба в три цвета
Сообщение01.11.2024, 10:47 
Заслуженный участник


07/08/23
1196
Можно разбить все раскраски на такие типы (формально — орбиты под действием и группы движений, и группы перестановок цветов):
1. Все грани одного цвета.
2. 5 граней одного цвета, одна другого.
3. 4 грани одного цвета, две соседние другого.
4. 4 грани одного цвета, две противоположные другого.
5. По 3 грани одного цвета, причём грани каждого цвета соседние (примыкают к общей вершине).
6. По 3 грани одного цвета, причём у каждого цвета есть противоположные грани.
7. 4 грани одного цвета, две соседние остальных цветов.
8. 4 грани одного цвета, две противоположные остальных цветов.
9. 3 соседние грани одного цвета, ещё 2 другого цвета, оставшаяся третьего.
10. 3 грани одного цвета, из них две противоположные, ещё две противоположные другого цвета, оставшаяся третьего.
11. 3 грани одного цвета, из них две противоположные, ещё две соседние грани другого цвета, оставшаяся третьего.
12. По 2 грани каждого цвета, грани каждого цвета противоположны.
13. По 2 грани каждого цвета, грани одного цвета противоположны, а двух других соседние.
14. По 2 грани каждого цвета, грани каждого цвета соседние.
В каждом типе легко посчитать, сколько раскрасок с точностью до движений. Ну и каждый тип, кроме последнего, имеет несобственную симметрию, так что с точностью до вращений тоже всё просто. На элементарном языке раскраски последнего типа разбиваются на 2 подтипа в зависимости от "ориентации".

 Профиль  
                  
 
 Re: Раскраска куба в три цвета
Сообщение03.11.2024, 12:06 


20/02/20
83
dgwuqtj
Спасибо за пост.С Бернсайдом все ясно,а вот Ваш переборный вариант дает элементарное комбинаторное решение.
Хотя,как мне вспоминается(все детали давно забыты),эта задача уже предлагалась на одной из олимпиад.Еще раз благодарю за ответ.Тема закрыта.

 Профиль  
                  
 
 Re: Раскраска куба в три цвета
Сообщение05.11.2024, 10:05 


07/10/24

21
dgwuqtj
У меня вышло восемь типов, суммарно 72, а у вас как?
Самый прикольный ваш 13, там типа две ориентации есть :-)

 Профиль  
                  
 
 Re: Раскраска куба в три цвета
Сообщение05.11.2024, 10:33 
Заслуженный участник


07/08/23
1196
Dashik007
Так я не считал ответ, мне проще через лемму Бернсайда: $\frac 1 {24} (3^6 + 8 \cdot 3^2 + 6 \cdot 3^3 + 3 \cdot 3^4 + 6 \cdot 3^3) = 3 \cdot 19 = 57$. Если уж разбить их по 14 типам, будет так: $3 + 6 + 6 + 6 + 3 + 3 + 3 + 3 + 6 + 6 + 6 + 1 + 3 + 2$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group