Ваш пример жульнический. Почему? Если Вы рассмотрите трехмерную задачу,
Ну это не правда. Я изначально рассматривал 2-мерную задачу - пустое полупространство ограниченное равномерно заряженной проволокой - но ввиду не зависимости от координаты z 3- мерная задача - полупространство ограниченное равномерно заряженной полуплоскостью - полностью ей эквивалента, и посему решение будет одинаковым.
А вот напряженность задается сходящимся несобственным интегралом и она будет постоянной.
я с эти и не спорю...Но у вас поле равно 0 в любой внешней задаче ибо потенциал с ваших слов в любой внешней задаче с любой односвязной области, ограниченной металлической проволокой (ее можно всегда конформным преобразованием свести или в полуплоскость, или в окружность), ибо потенциал с ваши слов постоянен. Не нравится бесконечная проволока - хорошо давайте рассмотрим предельный случай задачи топикстратрера
[/math - полубесконечная заряженная проволока в 2-мерном пространстве (эквивалентно заряженая металлическая полуплоскость в трехмерном пространстве). Там что тоже потенциал и/или поле будут постоянны?
Цитата:
А у ТС речь идет о потенциале с самого начала.
Нет она о поле изначально. Возможно нечетко сформулирована. Но сформулирована она так
Здравствуйте
Есть бесконечная полуполоса с заданным электрическим потенциалом
. Необходимо найти распределение поля (аналитически).
Цитата:
Смысл простой: в таких задачах в бесконечных областях нужно из каких-либо физических соображений оговаривать с самого начала условия на бесконечности.
Вот тут серьезный косяк я согласен. Ибо в формулировке топикстартер фигурирует потенциал заряда это бесконечной полосы
, но не сказано к какой точке, а на бесконечности действительно в 2 мерном случае далеко ненулевая асимптотика хоть напряженности поля, хоть потенциала, поэтому и нулевого потенциала по умолчанию нет.