2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Тривиум Арнольда, задача 10
Сообщение13.10.2024, 00:49 
Админ форума


02/02/19
2460
 !  Markiyan Hirnyk
Очередной бан на месяц за очередное же применение матпакета к олимпиадной/учебной задаче.

 Профиль  
                  
 
 Re: Тривиум Арнольда, задача 10
Сообщение15.10.2024, 11:34 
Заслуженный участник


03/01/09
1697
москва
nnosipov в сообщении #1658360 писал(а):
Это утверждение эквивалентно ВТФ для показателя $4$

А как это получается?

 Профиль  
                  
 
 Re: Тривиум Арнольда, задача 10
Сообщение15.10.2024, 12:35 


26/08/11
2097
mihiv в сообщении #1658611 писал(а):
А как это получается?
$d^2=u^3-u$

При $u=\frac x y,d=\frac z y$ после умножения на $y^4$ получается $(yz)^2=xy(x^2-y^2)$, что из -за взаимнопростоты $x,y,x^2-y^2$ сводится к $c^2=a^4-b^4$

 Профиль  
                  
 
 Re: Тривиум Арнольда, задача 10
Сообщение15.10.2024, 16:28 
Заслуженный участник


03/01/09
1697
москва
Shadowспасибо. То есть, доказано, что если ВТФ для $n=4$ верна, то уравнение $d^2=u^3-u\eqno (1)$ не имеет нетрив. рациональных решений, но обратное утверждение может быть неверно.

 Профиль  
                  
 
 Re: Тривиум Арнольда, задача 10
Сообщение15.10.2024, 17:57 
Заслуженный участник


20/12/10
9042
mihiv
Я там не совсем точно выразился. Нужно было так: утверждение об отсутствии нетривиальных рациональных точек на кривой $d^2=u^3-u$ равносильно утверждению о неразрешимости уравнения $x^4-y^4=z^2$ в натуральных числах. (Здесь равносильность утверждений следует понимать как возможность вывести каждое из них из другого.) Утверждение о неразрешимости уравнения $x^4-y^4=z^2$ в натуральных числах сильнее ВТФ для показателя $4$ в том смысле, что если мы его доказали, то ВТФ для показателя $4$ получаем как следствие.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihiv, ИСН


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group