Andante, ну куда ж Вы лезете выдумывать свою геометрию, не освоив азы обращения с комплексными числами. Комплексное число - это сумма

, где

- действительные числа,

- мнимая единица. Слагаемое

называется
мнимой частью комплексного числа. Если

, то комплексное число называется
чисто мнимым. Словосочетание "мнимое число" лучше не употреблять.
Я согласен с данной Вами алгебраической формой комплексного числа. А есть ещё тригонометрическая форма, которая говорит о модуле и аргументе комплексного числа. В геометрическом выражении комплексного числа модулю числа соответствует длина вектора, а аргументу числа угол, который образует вектор с положительным направлением действительной оси координат.
А если к длине вектора (не целиком к вектору, а только к его длине) приравнено комплексное число, значит, длине вектора поставлены в соответствие и модуль и аргумент числа. Покажите, пожалуйста, правила такого соответствия.