2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 11  След.
 
 Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 01:08 
Аватара пользователя


18/02/20
240
На ободе колеса радиуса $ R$, вращающегося с угловой скоростью $\Omega$ , закреплены часы.
Наблюдатель стоит неподвижно рядом с колесом.
Найти время, которое покажут часы за один оборот.
Найти скорость наблюдателя в системе отсчета, в которой часы неподвижны.

С показаниями часов, вроде, всё ясно. Просто считаем длину их мировой линии за один оборот и получаем

$T' = T \sqrt{1 - v^2/c^2}$ , где $T = 2 \pi /\Omega $.

А вот со скоростью у меня сомнения.
(Формулы берем из Ландау и Лифшица, т2, нумерацию сохраняем).

Скорость частицы в постоянном гравитационном поле (с.325):
$$v' = \frac{dl}{d\tau} = \frac{c dl}{\sqrt{g_{00}} dx^0}  \eqno  (1)  $$
Метрика вращающейся системы отсчета в цилиндрических координатах (с 329):
$$ds^2 = (c^2 - \Omega^2r^2)dt^2 - 2 \Omega r^2d\varphi dt - dz^2 - r^2 d\varphi^2 - dr^2  \eqno (89,2)  $$
Элемент пространственного расстояния (с 330):
$$dl^2 = dr^2 + dz^2 + \frac{r^2 d\varphi^2}{1 - \Omega^2 r^2/c^2} \eqno  (2)  $$

Из метрики (89,2) получаем $$g_{00} = c^2 (1- \Omega^2 r^2/c^2) \eqno (3) $$

Рассматривая движение по окружности постоянного радиуса $R$ (одинакового для обеих систем отсчета), полагая $dr = 0,\; dz = 0,\; dx^0 = dt$ , подставим
(2) и (3) в (1):
$$v' = \frac{1}{\sqrt{1-\Omega^2 R^2/c^2}} \frac{R d\varphi / dt}{\sqrt{1-\Omega^2
R^2/c^2}}  = \frac{\Omega R}{1-\Omega^2 R^2/c^2} $$

Но $ \Omega R  = v$ - скорость часов относительно наблюдателя.

Окончательно $$v' = \frac{v}{1-v^2/c^2}$$

Меня терзают сомнения.
Почему скорости разные? Почему скорость наблюдателя может превысить скорость света?
Действительно ли при переходе во вращающуюся систему отсчета сохраняется угловая скорость?

(Оффтоп)

С оформлением как-то не очень. Если формулы не выключить, индексы выглядят страшно, нумерация прилипает. Выключенные формулы размазаны по листу.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 04:06 
Заслуженный участник


24/08/12
1093
peg59 в сообщении #1656384 писал(а):
Почему скорости разные? Почему скорость наблюдателя может превысить скорость света?
Наличие ненулевого $g_{t \varphi}$ в (89.2) означает что времевая координата в данных координат не ортогональна пространственной (идет "наискосок") а значит близкие часы на ободе не синхронизованы (типа как локальные часы местного времени в разных часовых поясов, скажем в Москве и в Париже).
А по таким асинхронным часам, если применять $v' = \frac{dl}{d\tau} = \frac{c dl}{\sqrt{g_{00}} dx^0}$ (1) (расстояние поделенное на разности времевых показаний близких часов) - можно получить какую угодно скорость.

Поэтому выражение (1) для скорости ЛЛ вводят только для статической метрики (как видно из предложения прямо перед ней, которое начинается со словами "В статическом поле...").
А метрика (89.2) описывает стационарное, но не статическое поле.
Как определить скорость в стационарном (не статическом) поле рассказано прямо после этого (88.10 - 88.12 и соответный ликбез).

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 18:24 
Аватара пользователя


18/02/20
240
manul91 в сообщении #1656387 писал(а):
Как определить скорость в стационарном (не статическом) поле рассказано прямо после этого (88.10 - 88.12 и соответный ликбез).
Я обязательно это еще почитаю.

Но смотрите, с позиции здравого смысла. Я сижу на ободе с часами. Вокруг меня по окружности движется наблюдатель.
Длину обода я измерил: $\;L' = \frac{2 \pi R}{\sqrt{1 -\Omega^2R^2 /c^2}}$ , период измерен моими часами: $\;T' = T \sqrt{1 - v^2/c^2}$ , где $T = 2 \pi /\Omega $. Делим путь на время и получаем тот же результат.
Видимо, я не понимаю, что такое скорость.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 19:00 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
peg59 в сообщении #1656487 писал(а):
Но смотрите, с позиции здравого смысла.
Здравый смысл нарабатывался в глубоко нерелятивистском мире.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 20:17 
Заслуженный участник


24/08/12
1093
peg59 в сообщении #1656487 писал(а):
Видимо, я не понимаю, что такое скорость.
Видимо да, скорее всего так и есть.

Сидя где-то с одними единственными часами, никакую скорость нельзя измерить (в смысле определения скорости движущегося тела в системе отсчета).

Чтобы измерить (локальную) скорость какого-то движущегося тела, в какую-то систему отсчета - нужно:

а) определить длину ("дифференциально малого") расстояния $dl$ которое движущееся тело прошло, скажем с точки $P_1 \equiv (x_1, x_2, x_3)$ до точки $P_2 \equiv (x_1 + dx_1, x_2+dx_2, x_3+dx_3)$ в этой системе отсчета (подразумевается что локальное расстояние меряется радарным способом высылая свет туда-обратно - с $P_1$ до точки $P_2$ и обратно, измеряя время по единственными часами в например в $P_1$ и потом умножить это время на $\frac{c}{2}$. Но можно конечно расстояние мерять и прикладывая последовательно стандартными линейками, получится то же самое.)

б) засечь разницу показаний предварительно синхронизированных стандартных часов находящихся в точек $P_1$ и $P_2$ соответно, по мере прохода этого тела мимо них (предварительно часы также синхронизируются подобным стандартным способом: высылая свет туда-обратно используя коеффициент $\frac{1}{2}$ т.н. "синхронизация Эйнштейна"; или медленным переносом третьих контрольных часов что в пределе даст то же самое)

c) поделить одно на другое.

Это по определению скорости движущегося тела в СО.

Радарная дефиниция симметрична (из-за коеффициента $\frac{1}{2}$), поэтому без значения где "базироваться" для определения расстояния или синхронизации - в $P_1$ или $P_2$; получим одно и то же расстояние $dl$ и одну и ту же синхронизацию для близких точек $(x_1, x_2, x_3)$ и (x_1 + dx_1, x_2+dx_2, x_3+dx_3)$.
(в то же время, для интегральной (не дифференциально малой) - синхронизации по замкнутом контуре в нестатическом пространстве-времени - возможен "интегральный снос", при котором хотя и все локально-близкие часы взаимно синхронизированы, последние и первые при замыкания контура оказываются рассинхронизированными. А интегралное расстояние в общем случае нестатической метрики вообще может быть бессмысленным/неоднозначным т.к. зависит от выбора контура в 4D по котором его меряем.)

Поэтому, чтобы измерить ("локально-мгновенную") скорость "пролетающего мимо" наблюдателя в СО диска, вам нужны двое неподвижных в системе диска часов (синхронизированных) - в двух близких точек: $P$, и $P + Rd\varphi$ на ободе.
Ну и конечно, возможность засечь события когда мимо этих пролетит "наблюдатель" (который неподвижен в ИСО, но во вращающейся СО движется) - чью скорость вы хотите определить в СО диска.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 22:21 
Аватара пользователя


18/02/20
240
manul91 в сообщении #1656509 писал(а):
Сидя где-то с одними единственными часами, никакую скорость нельзя измерить

Неподвижный наблюдатель замечательно может измерить скорость вращения обода по своим единственным часам.

Ну хорошо. Я разделил путь, пройденный наблюдателем на время, за которое он этот путь прошел. Что я измерил, если не среднюю скорость? И почему результат такой же, как и в совсем другом расчете, как раз через дифференциалы? Совпадение?

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 22:38 


17/10/16
4913
peg59
Скорости первого относительно второго и второго относительно первого очевидно одинаковые только в инерциальных системах отсчета получаются. А здесь одна СО инерциальная, другая - нет. Если наблюдатель из ИСО расположен в центре вращения колеса, то его скорость с точки зрения наблюдателя на ободе вообще равна нулю.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 22:38 


29/01/09
686
peg59 в сообщении #1656384 писал(а):
(Формулы берем из Ландау и Лифшица, т2, нумерацию сохраняем).

Уважакемый ты слишком много времени общаешься с братом прокурора... Поэтому немного остается времени на чтение первоисточника... Итак книга бытия нумер 2 стих 84
Цитата:
По этой причине не имеет смысла интегрировать dl такой интеграл зависел бы от того, по какой мировой линии между двумя заданными пространственными точками он брался. Таким образом, в общей теории относительности теряет, вообще говоря, смысл понятие об определенном расстоянии между тела­ми, остающееся в силе лишь в бесконечно малом. Единственным случаем, когда расстояние может быть определено и в конечных областях пространства, являются такие системы отсчета, в ко­торых gik не зависят от времени, и потому интеграл $\int dl$ вдоль пространственной кривой имеет определенный смысл.
----------------
Уже в специальной теории относительности течение истинно­го времени различно для движущихся друг относительно друга часов. В общей же теории относительности истинное время течет различным образом и в разных точках пространства в одной и той же системе отсчета. Это значит, что интервал собственного времени между двумя событиями, происходящими в некоторой точке пространства, и интервал времени между одновременными с ними событиями в другой точке пространства, вообще говоря, отличны друг от друга.


А теперб посмотрите что у вас происходит - вы берете элементарный интервал длины - он у вас пространственноподобный, вы игнорируете этот факт - ставите перед ним минус , извлекаете корень, и затем суммируете... Это бессмысленная операция, мало того она будет зависеть (как точно отмечает ЛЛ), от того ка введенна одновременность то есть в какой системе координат измеряется элементарный интервал dl - в разных системах координат это будут разные линии, с разными квадратами интервалов. Я об этом брату прокурура кстати говорил - но там клиника, в коня корм не идет

И поелику бессмысленно измерение l таким образом - то бессмысленно и вычисление скорости l/t...Там еще Валлав подвязался, его с этого форума турнули, он примерно таким же методом считал потенциал гравитационного поля в метрике Шварцшильда вблизи горизонта, поелику у него свой конек он только признает бесконечноудаленных наблюдателей... Там вообще смотрю собрался еще тот зоопарк


сто это наука о реальных явлениях, а в реальном мире, вы никогда не измерите указанным способом в этом параграфе книги бытия длину. Все шо вам позволительно измерить в нашем бренном мире- это интервал вдоль времениподобной кривой(он будет положителен), и исходя из этого например определить количество молекул встреченных вдоль этой кривой, и оно не будет зависеть от выбора СК...

-- Сб сен 28, 2024 23:42:16 --

peg59 в сообщении #1656487 писал(а):
Длину обода я измерил: $\;L' = \frac{2 \pi R}{\sqrt{1 -\Omega^2R^2 /c^2}}$

и измерили неправильно - поскольку измерить так нельзя. измерения это всегда об интервалах причинных кривых

-- Сб сен 28, 2024 23:53:41 --

peg59 в сообщении #1656537 писал(а):
Неподвижный наблюдатель замечательно может измерить скорость вращения обода по своим единственным часам.

может, если заранее об этом позаботится... например взяв радар, эталон частоты к этому радару, систему отражателей,и чуствительный детектор. Потом в течении конечного времени на участке измерять разницу частот вежду эталоном и отраженным сигналов, из этого сравнения сделать вывод что в течении измерения (скажем 200 мкс) сдеднее отклонение частоты будет скажем 2 Гц, что соответствует 3 м/c

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 22:56 


17/10/16
4913
pppppppo_98
Для стационарного случая, которым является вращающаяся СО, и в которой метрика не зависит от времени, интегрировать $dl$ как раз имеет смысл согласно этой цитате.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:05 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
По поводу так называемого "вертикального" прогресса. Вот прямо сейчас несколько рыл задорно путаются в вещах, успешно разъяснённых более века тому назад.

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:10 
Заслуженный участник


24/08/12
1093
sergey zhukov в сообщении #1656545 писал(а):
Для стационарного случая, которым является вращающаяся СО, и в которой метрика не зависит от времени, интегрировать $dl$ как раз имеет смысл согласно этой цитате.
Поддерживаю, результат будет однозначным. Хотя и "снос" в синхронизации по замкнутом контуре при этом "подозрителен" - но большая интегральная длина обода в СО диска все-таки имеет физический смысл - если диск из состояния покоя привести к вращательному движению сохраняя его радиус $R$, то он чисто физически растянется в тангенциальном направлении (будут тангенциальные напряжения на разрыв; разумеется рассматривать его как твердым телом невозможно)
sergey zhukov в сообщении #1656540 писал(а):
peg59
Скорости первого относительно второго и второго относительно первого очевидно одинаковые только в инерциальных системах отсчета получаются. А здесь одна СО инерциальная, другая - нет.
Я надеялся, топикстартер подставит все как описано в 88.10 - 88.12 и сообщит нам о полученном результате для $v'$, в конкретном случае котором он рассматривает.
Во всяком случае локальная скорость $v'$ (скорость "наблюдателя неподвижного в ИСО" измеренная в СО диска на периферии R) не должна превышать скорости света в пределе R в котором вообще такая система отсчета диска физически возможна ($\Omega R< c$)

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:11 


29/01/09
686
sergey zhukov в сообщении #1656545 писал(а):
Для стационарного случая, которым является вращающаяся СО, и в которой метрика не зависит от времени, интегрировать $dl$ как раз имеет смысл согласно этой цитате.

а последний абзац этого стиха прочитали... Процедура расчета основаная на мифическом dl не имеет смысла, уже даже в ИСО - то самое щнамеитое лорецово сокращение, ибо зависит от того как считать одновременность в пространственно разделенных событиях

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:23 
Заслуженный участник


24/08/12
1093
pppppppo_98 в сообщении #1656550 писал(а):
Процедура расчета основаная на мифическом dl не имеет смысла, уже даже в ИСО - то самое щнамеитое лорецово сокращение, ибо зависит от того как считать одновременность в пространственно разделенных событиях
Ну уж это слишком:)

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:28 


29/01/09
686
manul91 в сообщении #1656555 писал(а):
pppppppo_98 в сообщении #1656550 писал(а):
Процедура расчета основаная на мифическом dl не имеет смысла, уже даже в ИСО - то самое щнамеитое лорецово сокращение, ибо зависит от того как считать одновременность в пространственно разделенных событиях
Ну уж это слишком:)

да... ну расскжжите же мне как у стержня длиной 1 метр , в котром расположено скажем 10^10 атомов (будем систать все сечение иридиевого буска, где находится атом за 1 атом)на этот же метр длины, при скорости 3/5 скорости света стало вдруг 0,8 *10^10 атомов... Я весь обратился в слух

 Профиль  
                  
 
 Re: Скорость во вращающейся системе отсчета.
Сообщение28.09.2024, 23:31 
Заслуженный участник


24/08/12
1093
peg59 в сообщении #1656537 писал(а):
Неподвижный наблюдатель замечательно может измерить скорость вращения обода по своим единственным часам.
Ваше "вычисление" не является по определению "скоростью объекта в СО" (что такое, и как оно измеряется подробно расписал выше). Не всякий интервал длины поделенный на интервал времени является скоростью какого-то объекта. Например, поделите свою высоту на 24ч (время за которое земля обращается вокруг оси) - получите величину размерностью м/с - но это не есть скорость какого-либо объекта в СО.

-- 29.09.2024, 00:34 --

pppppppo_98 в сообщении #1656556 писал(а):
да... ну расскжжите же мне как у стержня длиной 1 метр , в котром расположено скажем 10^10 атомов (будем систать все сечение иридиевого буска, где находится атом за 1 атом)на этот же метр длины, при скорости 3/5 скорости света стало вдруг 0,8 *10^10 атомов... Я весь обратился в слух
Разумеется, он как был, так и остался 10^10 атомов. И тем не менее его длина меньше собственной, если мерять ее в ИСО в которой он движется. Определение длины движущегося объекта в ИСО (что такое, как измеряется и т.д.) - разъяснять вам полагаю не нужно? :)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 152 ]  На страницу 1, 2, 3, 4, 5 ... 11  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Enceladoglu, Geen


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group