2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 04:46 
Аватара пользователя


07/01/15
1233
Недавно меня озадачили следующим фактом. Рассмотрим задачу Коши
$$u_t + uu_{x} = 0,\; u(x,0) = u_0(x).$$
Предположим, что $u_0(x)$ ограничена и непрерывно дифференцируема. (Специалистом) то ли всерьез, то ли в шутку утверждается, что глобальное решение для этой задачи существует не всегда! Я не понимаю, почему. Конкретных объяснений я не получил, а получил только совет разобраться самому, но как по мне классическое решение неявно задается как $u(x,t) = u_0(x-tu(x,t))$ и очевидно ограничено. Отсюда буквально шаг до доказательства существования глобального решения, но, что досадно, мне никак не удается гарантировать непрерывную дифференцируемость решения. Я здесь ощущаю подвох, но если это шутка, то какая-то внутренняя среди тех, кто занимается ДУЧП.

Пожалуйста, скажите, это все-таки правда или шутка? И если шутка, то в чем ее соль?

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 05:19 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
SomePupil в сообщении #1643065 писал(а):
то ли всерьез, то ли в шутку утверждается, что глобальное решение для этой задачи существует не всегда
 Да, непрерывное глобальное решение почти никогда не существует. Рассмотрим уравнение $u-u_0(x-tu)=0$. Чтобы его можно было однозначно решить, надо чтобы производная левой части по $u$ была отлична от $0$. Она равна $1+u'_0(x-ut) t$ и положительна при малых $t$. А вот при больших $t>0$ она м.б. отрицательной.  Исключение: $u'_0\ge 0$.

Это уравнение--игрушечное уравнение газовой динамики. Можно его переписать в виде $u_t +\frac{1}{2}(u^2)_x=0$ и тогда оно имеет смысл (в смысле обобщенных функций) и при разрывных $u$. Но. если рассмотреть такие решения, то их будет слишком много, задача Коши будет иметь много решений. Как же выбрать "правильное"? Здесь существенно $t>0$. Есть два совпадающих по существу ответа:

1) Наложить дополнительное условие $\frac{1}{2}(u^2)_t+\frac{1}{3}(u^3)_x\le 0$ (левая часть обобщенная функция, но этому условию можно придать смысл.  Заметим, что для разрывных функций $u_t +\frac{1}{2}(u^2)_x=0$ и $\frac{1}{2}(u^2)_t+\frac{1}{3}(u^3)_x=0 неэквивалентны.

2) Рассмотреть это уравнение с вязкостью $u_t+uu_x=\varepsilon u_{xx}$ и найти предел решения при $\varepsilon\to +0$

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 08:14 
Заслуженный участник
Аватара пользователя


27/12/17
1439
Антарктика
SomePupil
Это уравнение описывает распределение скоростей невзаимодействующих частиц, т.е. $u$ можно интерпретировать, как скорость частицы, находящейся в момент времени $t$ в точке $x$. Тогда возьмите, например, $u_0(x)=-\arctg x$ и нарисуйте её в координатах $(x,u)$, а потом посмотрите, как деформируется этот график с течением времени, учитывая, что $u$ -- скорость. Грубо говоря, график начнёт сжиматься по горизонтали, пока не образуется разрыв в нуле. Т.е. классическое решение существует только в полосе по времени (если аккуратно посчитать, как советовал Red_Herring, то, видимо, ширина полосы будет равна $1$). С другой стороны, для $u_0(x)=\arctg x$ частицы будут разбегаться в разные стороны и ни одна никакую не догонит, т.е. тут будет классическое глобальное решение.

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 08:19 


21/12/16
907
SomePupil в сообщении #1643065 писал(а):
я самому, но как по мне классическое решение неявно задается как $u(x,t) = u_0(x-tu(x,t))$ и о

тепень берем $u_0=-x$

Изучите геометрию, которая стоит за методом характеристик.

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 08:33 
Аватара пользователя


07/01/15
1233
Red_Herring в сообщении #1643066 писал(а):
Чтобы его можно было однозначно решить, надо чтобы производная левой части по $u$ была отлична от $0$. Она равна $1+u'_0(x-ut) t$ и положительна при малых $t$. А вот при больших $t>0$ она м.б. отрицательной. Исключение: $u'_0\ge 0$.

Точно! И довольно нетрудно :oops:
Мне следовало догадаться, что возможная отрицательность $u'_0$ рушит весь аргумент (существования непрерывного глобального решения)
Меня приучили (или я приучился) к тому, что от ограниченности до существования глобального (непрерывного) решения - один шаг. Лишь бы была оценка в норме некоторого пространства, а дальше итерациями ли, правдами-неправдами продолжаем решение до $t=+\infty.$
Но здесь гладкость потерялась где-то "по дороге". Сколько открытий чудных в ДУЧП...

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 11:00 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
SomePupil в сообщении #1643075 писал(а):
Меня приучили (или я приучился) к тому, что от ограниченности до существования глобального (непрерывного) решения - один шаг
Отучитесь. Ограниченность это принадлежность к $L^\infty$ которое лишь одно из многих пространств, ничем не лучше, а иногда и хуже других. Для непрерывных решений три уравнения эквивалентны
\begin{align}
&u_t+uu_x=0,\\
&u_t +\frac{1}{2}(u^2)_x=0,\\
&\frac{1}{2}(u^2)_t + \frac{1}{3}(u^3)_x=0.
\end{align}
А вот для разрывных (1) не имеет смысла, а (2) и (3) неэквивалентны.

Возможно, что аналогичная ситуация и для Навье-Стокса. Там нетрудно доказать существование глобального но не очень регулярного решения: например, введя искусственную "вязкость", добавив $-\varepsilon \Delta^2\boldsymbol{u} $ в правую часть. Вопрос однако будет ли оно достаточно гладким. чтобы гарантировать единственность. Если да--проблема решена положительно и кто-то получает миллион, сильно похудевший из-за инфляции, и конец. Если нет--проблема решена отрицательно, кто-то опять таки с миллионом, но возникает новая проблема: выделить из всех несладких решений "правильные" (речь, конечно, о Н.-С. в дивергентной форме).

-- 17.06.2024, 03:03 --

thething в сообщении #1643071 писал(а):
т.е. тут будет классическое глобальное решение
Но только в сторону положительного времени. В таких нелинейных задачах направление времени важно, хотя уравнение гиперболическое (нелинейность!!!)

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 12:31 


21/12/16
907
Red_Herring в сообщении #1643083 писал(а):
SomePupil в сообщении #1643075

писал(а):
Меня приучили (или я приучился) к тому, что от ограниченности до существования глобального (непрерывного) решения - один шаг Отучитесь.

Не надо пугать людей. От ограниченности в соответствующем пространстве до глобального существования (слабого) решения действительно один шаг. Это верно не как теорема, а как общий принцип. Другое дело, что , да , есть исключения.

 Профиль  
                  
 
 Re: Отсутствие глобального решения при наличии ограниченности?
Сообщение17.06.2024, 13:54 
Заслуженный участник
Аватара пользователя


31/01/14
11345
Hogtown
drzewo в сообщении #1643094 писал(а):
Не надо пугать людей. От ограниченности в соответствующем пространстве до глобального существования (слабого) решения действительно один шаг.
Да, только ТС под решением понимает классическое решение, под ограниченностью--принадлежность $L^\infty$ а вовсе не ограниченность в соответствующем пространстве. Не говоря уже о том, что нужна еще плотность (иначе полезут передопределенные задачи ли задачи в областях с углами). В общем, не надо соблазнять "малых сих".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group