"Натягивания совы на глобус" нет. Просто в первой ссылке кратко изложено то, что студент должен будет подробно изучить по учебникам. А во второй ссылке, судя по перечисленным разделам, - более подробное изложение.
Вообще, пока не изучите предмет, избегайте собственных оценок типа "натягивание совы на глобус" и "в книге автор может немного путать". Гораздо вероятнее, что непонимание учебных текстов в таком случае есть следствие вашего незнания предмета, а не результат якобы заблуждений авторов.
Первая ссылка и перечисленные названия разделов - всё это относится к стандартной в учебном курсе квантовой механики (КМ) задаче о гармоническом одномерном осцилляторе. Эта задача - одна из простейших в КМ (и в то же время по своему смыслу очень важная для дальнейших приложений и обобщений), так как она допускает точное и притом не очень сложное решение. От неё до упомянутой Вами темы о колебаниях многоядерной молекулы ещё ой как далеко...
Однако даже простейшие учебные задачи КМ невозможно разобрать наскоком; это так же не реально, как одним прыжком запрыгнуть на вершину горы. Необходимо последовательное изучение основ.
Картина тут примерно вот какая (схематично). На 1-м году обучения студенты осваивают "Общую физику", на 2-м году - "Экспериментальную физику", или "Прикладную физику", или "Атомную физику", - это разные возможные названия предмета, в котором подробно разбираются эксперименты, на основе которых были открыты законы физики, и классической, и квантовой. Всё сопровождается решением задач с количественными оценками, а также лабораторными работами.
Параллельно с физикой студенты изучают разделы высшей математики, а затем и математическую физику - это математика, необходимая для изучения теорфизики. С теорфизикой студенты начинают знакомиться по её классической части, это классическая (т.е. не квантовая) механика и электродинамика. И лишь после такой солидной подготовки приступают к КМ, на 3-м или даже на 4-м году обучения. Всё это - тоже с задачами и упражнениями. После КМ изучают статистическую физику. А затем и специальные дисциплины (например, квантовую химию, физику конденсированного состояния, и др.), которым эта теоретическая основа необходима.
Много учебной литературы по КМ (изданной, в основном, в советское время) есть здесь:
https://eqworld.ipmnet.ru/ru/library/ph ... uantum.htm На страницах этой библиотеки есть учебники и по другим разделам физики, а также и по математике.
Изучайте учебники последовательно, а не с пятого на десятое. Тогда, может быть, многие вопросы отпадут. Переписывать же сюда на форум весь необходимый учебный материал да ещё его и растолковывать - дело нереальное; и ненужное при наличии обилия учебной литературы. В конце изучения КМ, если ещё останутся или возникнут осмысленные вопросы, их, может быть, и стоит задать на форуме; а начинать изучение КМ с форумных разговоров (как и с чтения только лишь научпопа) - пустая трата времени.
Вот я начал читать про базисы, вначале понятно, и мне казалось что используемые на практике базисы – это три вектора, т.е. суммарно девять действительных чисел.
Нет, в КМ речь идёт о базисах в пространствах волновых функций; такие пространства (их в КМ называют пространствами состояний рассматриваемых квантовых объектов) в общем случае бесконечномерные. Широко известный вне КМ пример разложения функции по бесконечномерному базису - разложение Фурье (применяется не только в КМ, а и в электродинамике, в радиотехнике).
Ещё я помню что в ЭПР эксперименте было два базиса, а в неравенствах Белла – три. А в книге дальше начинается описание каких-то бесконечномерных базисов. Это корректно?
Не корректно сопоставлять отрывочные воспоминания с подробным изложением в книге. ЭПР и неравенства Белла это вообще не начального уровня тема, и не нужная для понимания основ КМ. Принцип суперпозиции в КМ - вот одно из самых основных понятий; для его корректного описания существенны бесконечномерные базисы.
автор пишет, что достаточно точная аналогия – считать что функция это вектор, а оператор – это квадратная матрица.
Да, в КМ применяют матричное представление операторов. Речь здесь идёт о бесконечномерных векторах и, соответственно, о матрицах, - у них номера строк и столбцов пробегают бесконечное множество значений.
а что такое сопряжение, я пока не понял, но по названию звучит как замена знака у мнимой части
По названиям в физике вообще не надо судить о содержании понятий. Речь здесь идёт об эрмитовом сопряжении оператора; в матричном представлении это есть комплексное сопряжение элементов матрицы и её транспонирование. В книге дано определение сопряжённого оператора через понятие скалярного произведения функций и объяснено, для чего нужна эта операция.
Ещё есть унитарные операторы, которые, как я понял, при сопряжении превращаются в свои обратные операторы, пока совсем непонятно.
Да есть; это тоже одно из основных понятий в КМ. Непонимание КМ при первом чтении учебника - совершенно нормальная ситуация. Будет многое казаться непонятным, пока не одолеете курс последовательно и полностью, притом с примерами и задачами.
Основываясь на своём личном опыте и на многолетних наблюдениях студенческих мучений, я всем начинающим изучать КМ советую не пытаться после каждых нескольких прочитанных страниц что-то себе окончательно формулировать. Надо терпеливо изучать курс полностью. При этом желательно одолеть несколько учебников, разных авторов. Затем - вернуться в самое начало и снова всё хорошенько прочитать и обдумать - теперь уже с позиций полученных знаний. И повторить такое восхождение каждый раз на новый уровень понимания несколько раз. Тогда, может быть, и начнёт появляться некоторая ясность. Никто никому не обещал, что изучать КМ легко; это одна из самых трудных наук.
(Что касается именно упомянутой книги Тихонова, то, может быть, это и не лучший учебник. Подробно я её не прочитал. Разговорный тон автора мне неприятен, но по содержанию, насколько я успел заметить при беглом просмотре, там вроде всё более или менее традиционно, без дикой отсебятины.)