2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение05.08.2023, 17:27 
Утундрий в сообщении #1601562 писал(а):
Пусть задан интервал, в котором линии $x^i=const$ являются мировыми.
Я сломался на этой фразе.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение05.08.2023, 17:44 
Аватара пользователя
То есть, к тексту до этой фразы замечаний нет. Тоже неплохо.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение05.08.2023, 18:10 
Аватара пользователя
Утундрий в сообщении #1601043 писал(а):
Пусть задан интервал, в котором линии $x^i=const$ являются мировыми. Это сразу даёт условие$$g_{00}>0 \eqno (1,1)$$
У нас латинские индексы принимают значения $1,2,3$, поэтому на линии $x^i=\operatorname{const}$ будет $dx^1=dx^2=dx^3=0$. Тогда
$ds^2 = g_{\mu\nu}dx^\mu dx^\nu = g_{00} (dx^0)^2$ (все остальные слагаемые нулевые)
Раз линия мировая, $ds^2>0$ при $dx^0\neq 0$, откуда и получается $g_{00}>0$.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение05.08.2023, 18:19 
Утундрий в сообщении #1604077 писал(а):
То есть, к тексту до этой фразы замечаний нет. Тоже неплохо.

Не, ну если уж придираться... Может ли мировая линия быть не гладкой кривой? Пилить туда-обратно, например? Согласно определению.

Если интервал эквивалентен метрике, то есть есть дифференциальная форма, тогда ОК. Если же он просто число, заданное на определённой кривой, то мой парсер ломается. Не принципиально, ОК.

-- 05.08.2023, 18:50 --

Утундрий в сообщении #1601043 писал(а):
В каких областях изменения координат $t, r, \theta, \varphi$ (и при каком выборе $x^0$) линии $x^i=const$ являются мировыми?
А подразумевается ли какая-то "каноническая" связь между упомянутыми буквами и иксами с латинскими индексами? Потому что что нам мешает дополнительно повращать и порастягивать пространство?

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение05.08.2023, 23:00 
Аватара пользователя
realeugene в сообщении #1604086 писал(а):
Может ли мировая линия быть не гладкой кривой?
Она-то, может, и может, только кому такая мировая линия нужна? Поскольку скоро завезут производные, то всё резко становится гладким.
realeugene в сообщении #1604086 писал(а):
подразумевается ли какая-то "каноническая" связь между упомянутыми буквами и иксами с латинскими индексами?
Нет.
realeugene в сообщении #1604086 писал(а):
что нам мешает дополнительно повращать и порастягивать пространство?
То, что пока что ничто такое не было определено. Но уже во второй серии можно будет и повращать и порастягивать.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение06.08.2023, 15:47 
Аватара пользователя
Я конечно многое подзабыл, но пока ничего сверх криминального не обнаружил.
Правда неравенства (1,16) Гильберт ввёл дополнительно к основным уравнениям, чтобы
соблюдался принцип причинности. У вас они вытекают как бы сами по себе из общих соображений.
Метрика разлагается в виде (1,2) вообще для любого случая решения уравнений Эйнштейна.
Задача также смущает. У вас в метрике две особенности $r=1$ и $r=0$.
Первая считается координатной, но у вас это нигде не показано. Вторая вообще катастрофа.
Проще предположить, что область $0<r<1$ вообще не физическая.
Что творится при $r=1$ непонятно. Если вы устраняете её сингулярными преобразованиями, то
это надо показать и понять, а физичны ли они?

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение06.08.2023, 16:04 
Аватара пользователя
schekn в сообщении #1604179 писал(а):
Проще предположить, что область $0<r<1$ вообще не физическая.
А какие к тому основания?

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение06.08.2023, 16:47 
Аватара пользователя
Утундрий в сообщении #1604180 писал(а):
А какие к тому основания?

Почему все решения уравнений Г-Э имеют право на жизнь? Откуда это следует?

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение06.08.2023, 17:06 
Аватара пользователя
schekn в сообщении #1604185 писал(а):
Почему все решения уравнений Г-Э имеют право на жизнь? Откуда это следует?
Это вопль души? Есть такое вполне разумное предположение. Если обладаете критерием отбора "расово правильных" решений, то озвучьте его. Только пусть это не будет "потому что я так хочу".

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение06.08.2023, 21:35 
Аватара пользователя
schekn в сообщении #1604179 писал(а):
Метрика разлагается в виде (1,2) вообще для любого случая решения уравнений Эйнштейна.

Эта фраза либо бессмысленная, либо неверная...

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение07.08.2023, 01:57 
schekn в сообщении #1604179 писал(а):
Проще предположить, что область $0<r<1$ вообще не физическая.

с чего бы вдруг если ведомо что в черную дыру за конечное время в собственных часах падают пробные тела

Утундрий в сообщении #1604187 писал(а):
Если обладаете критерием отбора "расово правильных" решений


Ну например ИМХО решение Геделя имхо рассово неправильно....рассовая правильносить тоже имхо отсутствие проблем с причинностью.. Ну и так же хотя права на существование даю, но полной рассовой правильности нет у всех решений с неполнывми геодезическими

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение07.08.2023, 10:30 
Аватара пользователя
Утундрий в сообщении #1604187 писал(а):
Есть такое вполне разумное предположение. Если обладаете критерием отбора "расово правильных" решений, то озвучьте его. Только пусть это не будет "потому что я так хочу".

"Расово правильное" решение должно быть проверено экспериментом. По изучению геодезических. У вас их нет. У вас есть "расово неправильная" сингулярность.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение07.08.2023, 13:26 
Аватара пользователя
schekn в сообщении #1604249 писал(а):
"Расово правильное" решение должно быть проверено экспериментом.

Интересно, каким образом может быть проверено экспериментом решение, которое только сформулировано?

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение08.08.2023, 03:32 
Аватара пользователя
epros в сообщении #1604265 писал(а):
schekn в сообщении #1604249 писал(а):
"Расово правильное" решение должно быть проверено экспериментом.

Интересно, каким образом может быть проверено экспериментом решение, которое только сформулировано?

Решение Шварцшильда найдено 100 лет назад. И оно проверялось в слабых полях Солнечной Системы по геодезическим.

 
 
 
 Re: ХРИН 01 Системы отсчёта и сопутствующие координаты
Сообщение08.08.2023, 03:46 
Аватара пользователя
Давайте прекратим оффтоп.

 
 
 [ Сообщений: 46 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group