2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Переопределение энтропии
Сообщение05.07.2023, 08:00 


01/03/13
2614
Известное определение энтропии через $dS=\frac{\delta Q}{T}$ приводит к парадоксальному поведению энтропии идеального газа при нулевой температуре. Кто-нибудь пытался переопределить энтропию? Например вот так:
$$dS=a \frac{\delta Q}{aT+1},$$
$a$- размерная константа, $a=\frac{dS}{\delta Q}, (T=0)$.
Пусть $\delta Q=C\delta T$. Тогда $$S=aCln(aT+1).$$

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение05.07.2023, 08:28 


30/01/18
639
Osmiy в сообщении #1599934 писал(а):
Например вот так:
$$dS=a \frac{\delta Q}{aT+1},$$
На мой взгляд это не удобно.

Проще назначить нулевую энтропию $S_0=0$, при каких-то $T_0 \neq 0$, $V_0 \neq 0$, $p_0 \neq 0$.
Тогда, зная $S_1$ и $S_2$, Подведённая теплота в изотермическом процессе вычисляется: $Q_{12}=T(S_2-S_1)$ без всяких коэффициентов $a$ .

В чём удобство Вашего предложения?

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение05.07.2023, 09:00 


01/03/13
2614
rascas в сообщении #1599935 писал(а):
В чём удобство Вашего предложения?
Я не о практическом удобстве речь веду, а о более правильном теоретическом/фундаментальном определении энтропии. Старая энтропия уходит в минус бесконечность при нуле Кельвина, а моя в равна нулю и всегда положительна.

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение05.07.2023, 10:20 
Заслуженный участник


14/10/14
1220
Osmiy в сообщении #1599934 писал(а):
Известное определение энтропии через $dS=\frac{\delta Q}{T}$ приводит к парадоксальному поведению энтропии идеального газа при нулевой температуре.
Это уравнение (2-е начало термодинамики) определяет энтропию с точностью до аддитивной постоянной. Проблема не во 2-м начале, а в модели классического идеального газа: она неадекватна при очень низких температурах, когда большую роль играют квантовые эффекты.

Osmiy в сообщении #1599934 писал(а):
Кто-нибудь пытался переопределить энтропию?
В статистической теории энтропия интерпретируется как понятие статистики. Неформально, минус энтропия измеряет, насколько много мы знаем о системе по сравнению с ситуацией, когда все состояния равновероятны. Формально, энтропия меры $\mu$ равна $S=-\int d\mu\ln\dfrac{d\mu}{d\nu}$, где $\nu$ -- стандартная мера: в дискретном случае обычно считающая, для канонического ансамбля -- лебеговская (она же лиувиллевская) $\prod_idp_idq_i$... (В частности, для конечного множества со считающей мерой энтропия распределения вероятностей $p_i$ -- это минус среднее значение логарифма вероятности состояния $i$: $S=-\mathbb E\ln p_i=-\sum_ip_i\ln p_i$; слагаемые с $p_i=0$ не учитываются.)

Нулевая температура соответствует отсутствию движения, то есть все частицы сосредоточены на поверхности $\{p_i=0\}$. Эта поверхность имеет нулевую меру в пространстве $p$ и $q$, то есть знание о том, что все частицы на ней находятся -- бесконечно подробное, поэтому и энтропия, в рамках модели классического идеального газа, бесконечна. Это противоречит 3-му началу термодинамики.

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение05.07.2023, 10:49 
Заслуженный участник
Аватара пользователя


18/09/14
5012
Osmiy в сообщении #1599938 писал(а):
Старая энтропия уходит в минус бесконечность при нуле Кельвина

Почему, собственно? Вы исходите из предположения, что теплоёмкость термодинамической системы не зависит от температуры? Если так, то это неверно.
Посмотрите, кстати, 3-е начало термодинамики (другое название: тепловой закон Нернста).

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение05.07.2023, 14:00 
Заслуженный участник
Аватара пользователя


03/06/08
2319
МО
Я, конечно, извиняюсь, но разве это не есть просто изменение шкалы температур? плюс размерность энтропии..
Osmiy в сообщении #1599934 писал(а):
Кто-нибудь пытался переопределить энтропию?

Ленивый не пытался. Вот есть, например, энтропия Тсалиса.

 Профиль  
                  
 
 Re: Переопределение энтропии
Сообщение03.08.2023, 17:08 


29/01/09
599
Osmiy в сообщении #1599934 писал(а):
Известное определение энтропии через $dS=\frac{\delta Q}{T}$ приводит к парадоксальному поведению энтропии идеального газа при нулевой температуре. Кто-нибудь пытался переопределить энтропию? Например вот так:
$$dS=a \frac{\delta Q}{aT+1},$$
$a$- размерная константа, $a=\frac{dS}{\delta Q}, (T=0)$.
Пусть $\delta Q=C\delta T$. Тогда $$S=aCln(aT+1).$$


Зачем... Не существует идеальных газов при нулевой температуре ... Теорема Нернста (экспериментально подтвержденная) дает иную оценку поведения энтропии при приближении к абсолютному нулю

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Igogor64


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group