Уважаемые эксперты.
Представленный ниже материал имеет какие-то принципиальные ошибки, наверное такие же как и в материале в теме "гравиполе куба вдоль диагонали",которые приводят к ошибочному результату, но обнаружить их не удается. Уверен, что "свежий" взгляд их моментально обнаружит. Излагаю материал подробно, нет необходимости отвлекать внимание.
Заранее благодарен.
Силовое воздействие куба(
![$H$ $H$](https://dxdy-04.korotkov.co.uk/f/7/b/9/7b9a0316a2fcd7f01cfd556eedf72e9682.png)
),на единичную массу, на линии ортогональной грани и проходящей через ее геометрический центр будем находить из выражения:
![$$H=\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{dxdydz(R-z)G\rho}{((x^2+y^2+(R-z)^2)^\frac{3}{2}}$$ $$H=\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{dxdydz(R-z)G\rho}{((x^2+y^2+(R-z)^2)^\frac{3}{2}}$$](https://dxdy-01.korotkov.co.uk/f/0/b/c/0bc3b0c1439cadf24c1f2e828efab03e82.png)
где:
![$V_{k}$ $V_{k}$](https://dxdy-04.korotkov.co.uk/f/f/7/5/f75d10508c43d5007ef4f62dc4d36e4782.png)
-объем куба,
![$G$ $G$](https://dxdy-02.korotkov.co.uk/f/5/2/0/5201385589993766eea584cd3aa6fa1382.png)
-гравитационная постоянная,
![$\rho$ $\rho$](https://dxdy-03.korotkov.co.uk/f/6/d/e/6dec54c48a0438a5fcde6053bdb9d71282.png)
- плотность вещества куба,
![$R_{0}$ $R_{0}$](https://dxdy-02.korotkov.co.uk/f/1/e/7/1e7fcf6ac6efde96b00f244a4c962bd582.png)
-удаление контрольной точки от центра масс.
Интегрируем по переменной ( z): Производная по z от выражения
![$(x^2+y^2+(R-z)^2)^\frac{-1}{2}$ $(x^2+y^2+(R-z)^2)^\frac{-1}{2}$](https://dxdy-02.korotkov.co.uk/f/1/d/a/1dab796ca317e2819d6d88afd57115ef82.png)
равна
![$$\frac{(-1)2(R-z)(-1)}{2((x^2+y^2+(R-z)^2)^\frac{3}{2}}$$ $$\frac{(-1)2(R-z)(-1)}{2((x^2+y^2+(R-z)^2)^\frac{3}{2}}$$](https://dxdy-02.korotkov.co.uk/f/9/1/2/912ae05392bcc27a2354d81bbd25f17282.png)
это равно выражению под тройным интегралом. Следовательно:
![$$H=\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{G\rho dxdy}{\sqrt{x^2+y^2+(R-r)^2}}-\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{G\rho dxdy}{\sqrt{x^2+y^2+(R+r)^2}}$$ $$H=\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{G\rho dxdy}{\sqrt{x^2+y^2+(R-r)^2}}-\int\limits_{-r}^{+r}\int\limits_{-r}^{+r}\frac{G\rho dxdy}{\sqrt{x^2+y^2+(R+r)^2}}$$](https://dxdy-02.korotkov.co.uk/f/1/6/2/1621953e563cf49ab0acb55b4993732182.png)
где:
![$r$ $r$](https://dxdy-01.korotkov.co.uk/f/8/9/f/89f2e0d2d24bcf44db73aab8fc03252c82.png)
- полуребро куба. Интегрируем по переменной у:
Согласно таблицам интегралов(Двайт) 200.01:
![$$\int\limits_{}^{}\frac{dy}{\sqrt{y^2+a^2}}=\ln\parallel (y+\sqrt{y^2+a^2})\parallel=\ln(y+\sqrt{y^2+x^2+(R-r)^2})$$ $$\int\limits_{}^{}\frac{dy}{\sqrt{y^2+a^2}}=\ln\parallel (y+\sqrt{y^2+a^2})\parallel=\ln(y+\sqrt{y^2+x^2+(R-r)^2})$$](https://dxdy-02.korotkov.co.uk/f/9/2/e/92e514aa9526af5b7220697c9ed765eb82.png)
Модуль сразу заменяем на круглые скобки, так как выражение под модулем, при
![$R \ $ $R \ $](https://dxdy-03.korotkov.co.uk/f/a/f/6/af64fb6e600f6435162f9c6f901a55cd82.png)
много большем
![$x,y,r \ $ $x,y,r \ $](https://dxdy-04.korotkov.co.uk/f/3/8/d/38d09b5fbab8dec45d68db69e6d080a782.png)
, больше нуля.
где:
![$a^2=x^2+(R-r)^2$ $a^2=x^2+(R-r)^2$](https://dxdy-03.korotkov.co.uk/f/a/f/c/afc80a02cc254d5a6c2b573e2494f73e82.png)
-для первого двойного интеграла,
![$a^2=x^2+(R+r)^2$ $a^2=x^2+(R+r)^2$](https://dxdy-01.korotkov.co.uk/f/4/5/4/4548bc0b6f95c83bd27da7f562e23c6382.png)
-для второго двойного интеграла. Получим выражение для поля:
![$$H=G\rho(\int\limits_{-r}^{+r}\ln(r+\sqrt{r^2+x^2+(R-r)^2})dx-\int\limits_{-r}^{+r}\ln(-r+\sqrt{r^2+x^2+(R-r)^2})dx$$ $$H=G\rho(\int\limits_{-r}^{+r}\ln(r+\sqrt{r^2+x^2+(R-r)^2})dx-\int\limits_{-r}^{+r}\ln(-r+\sqrt{r^2+x^2+(R-r)^2})dx$$](https://dxdy-02.korotkov.co.uk/f/5/0/7/507796aacfe2e17f30aa5b6ecf2d5bf182.png)
Введем обозначения для интегралов в скобках по порядку и будем вычислять их отдельно без произведения
![$G\rho$ $G\rho$](https://dxdy-04.korotkov.co.uk/f/b/7/4/b74172cadee8ea9651245c27cb775b9182.png)
:
![$$H=G\rho(I_{1}-I_{2}-I_{3}+I_{4})$$ $$H=G\rho(I_{1}-I_{2}-I_{3}+I_{4})$$](https://dxdy-03.korotkov.co.uk/f/6/6/f/66fff27205637a48a716ec8b771fce7d82.png)
![$$I_{1}=\int\limits_{-r}^{+r}\ln(r+\sqrt{x^2+r^2+(R-r)^2})dx$$ $$I_{1}=\int\limits_{-r}^{+r}\ln(r+\sqrt{x^2+r^2+(R-r)^2})dx$$](https://dxdy-01.korotkov.co.uk/f/0/e/9/0e90b9e5805d6e63887f744ef38c11fa82.png)
Берем по частям:
![$$dv=dx$$ $$dv=dx$$](https://dxdy-03.korotkov.co.uk/f/6/6/a/66af0157f4fbce654f4830c84c5453fd82.png)
![$$du=\frac{2x}{(r+\sqrt{x^2+r^2+(R-r)^2})2\sqrt{x^2+r^2+(R-r)^2}}$$ $$du=\frac{2x}{(r+\sqrt{x^2+r^2+(R-r)^2})2\sqrt{x^2+r^2+(R-r)^2}}$$](https://dxdy-01.korotkov.co.uk/f/8/4/0/84044c5e722c70f4e101fa85de30825b82.png)
![$$v=x$$ $$v=x$$](https://dxdy-03.korotkov.co.uk/f/a/1/1/a11fee45b0c6d4dd5812155739fe118382.png)
![$$I_{1}=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-\int\limits_{}^{}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{x^2+r^2+(R-r)^2}}$$ $$I_{1}=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-\int\limits_{}^{}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{x^2+r^2+(R-r)^2}}$$](https://dxdy-04.korotkov.co.uk/f/f/f/1/ff1cecfb155b4735f009750e87ccc09482.png)
Рассмотрим вторую интегральную часть выражения
![$I_{1}$ $I_{1}$](https://dxdy-03.korotkov.co.uk/f/2/1/2/21247423b14dba81563536a5cca81abd82.png)
:
![$$(-1)\int\limits_{-r}^{+r}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{x^2+r^2+(R-r)^2}}$$ $$(-1)\int\limits_{-r}^{+r}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{x^2+r^2+(R-r)^2}}$$](https://dxdy-02.korotkov.co.uk/f/5/8/1/581ff0d5625917d7dd72059e230e6c1b82.png)
Введем переменную
![$t$ $t$](https://dxdy-01.korotkov.co.uk/f/4/f/4/4f4f4e395762a3af4575de74c019ebb582.png)
:
![$t=\sqrt{x^2+r^2+(R-r)^2}$ $t=\sqrt{x^2+r^2+(R-r)^2}$](https://dxdy-01.korotkov.co.uk/f/0/9/9/09977b7cbef87f353b0135eed62718f082.png)
![$$dt=\frac{2xdx}{2\sqrt{x^2+r^2+(R-r)^2}}$$ $$dt=\frac{2xdx}{2\sqrt{x^2+r^2+(R-r)^2}}$$](https://dxdy-01.korotkov.co.uk/f/8/4/a/84a94809cb49dd20ee9c0f0cb9ad0cb882.png)
![$ x=\sqrt{t^2-r^2-(R-r)^2}$ $ x=\sqrt{t^2-r^2-(R-r)^2}$](https://dxdy-04.korotkov.co.uk/f/7/c/b/7cb6a051fb6eb9127c226187aaf5f1d382.png)
, то в новых переменных интеграл будет иметь вид:
![$$ (-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R-r)^2}dt}{(r+t)}$$ $$ (-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R-r)^2}dt}{(r+t)}$$](https://dxdy-04.korotkov.co.uk/f/3/3/7/3377d26f249ab4d2d6234fc6425ea8c382.png)
Введем новую переменную:
![$(r+t)=m $ $(r+t)=m $](https://dxdy-04.korotkov.co.uk/f/7/7/1/771a9cbc099982df1875b3c8a3dfb6a682.png)
,
![$t=m-r$ $t=m-r$](https://dxdy-02.korotkov.co.uk/f/d/b/9/db90d782b7ecca2cb7ba8dd96d5a3d5682.png)
. Тогда интеграл будет иметь вид:
![$$(-1)\int\limits_{}^{}\frac{\sqrt{(m-r)^2-r^2-(R-r)^2}dm}{m}=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2mr+r^2-r^2-(R-r)^2}dm}{m}$$ $$(-1)\int\limits_{}^{}\frac{\sqrt{(m-r)^2-r^2-(R-r)^2}dm}{m}=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2mr+r^2-r^2-(R-r)^2}dm}{m}$$](https://dxdy-01.korotkov.co.uk/f/8/2/3/823785907e3c33702501147d29ecda1c82.png)
![$$=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2rm-(R-r)^2}dm}{m}$$ $$=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2rm-(R-r)^2}dm}{m}$$](https://dxdy-02.korotkov.co.uk/f/5/6/1/561599c28fe998c3670d673746eb5c5782.png)
коэффициенты квадратного трехчлена под корнем равны:
![$$a=1, b=-2r,c=-(R-r)^2$$ $$a=1, b=-2r,c=-(R-r)^2$$](https://dxdy-01.korotkov.co.uk/f/8/a/d/8ad19e50e237b1d704e55b05b3319d3a82.png)
Согласно таблицам интегралов (Двайт) 380.311
![$$(-1)\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}dm}{m}=(-1)(\sqrt{am^2+bm+c}+b/2\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}})$$ $$(-1)\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}dm}{m}=(-1)(\sqrt{am^2+bm+c}+b/2\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}})$$](https://dxdy-02.korotkov.co.uk/f/5/f/7/5f7dda3d6afbcc2f25f7c4112e0f6fef82.png)
Это равно:
![$$(-1)(\sqrt{m^2-2rm-(R-r)^2}+(-r)\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2r-(R-r)^2}}$$ $$+(-(R-r)^2)\int\limits_{}^{}\frac{dm}{m\sqrt{m^2-2rm-(R-r)^2}})\eqno (1)$$ $$(-1)(\sqrt{m^2-2rm-(R-r)^2}+(-r)\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2r-(R-r)^2}}$$ $$+(-(R-r)^2)\int\limits_{}^{}\frac{dm}{m\sqrt{m^2-2rm-(R-r)^2}})\eqno (1)$$](https://dxdy-01.korotkov.co.uk/f/4/0/e/40e58e92363ad753f2025b83a39a826182.png)
Согласно таблицам(Двайт)380.001
![$$a\geqslant0$$ $$a\geqslant0$$](https://dxdy-03.korotkov.co.uk/f/e/a/9/ea942ab11c7929b0a540acfe4e0ad65482.png)
Для реальных
![$a,b,c$ $a,b,c$](https://dxdy-01.korotkov.co.uk/f/0/b/1/0b1666db7be254fa8998cf3a27c985bb82.png)
интеграл будет иметь вид:
![$$\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2rm-(R-r)^2}}=\ln(2\sqrt{m^2-2rm-(R-r)^2}+2m-2r)$$ $$\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2rm-(R-r)^2}}=\ln(2\sqrt{m^2-2rm-(R-r)^2}+2m-2r)$$](https://dxdy-02.korotkov.co.uk/f/d/1/d/d1d09383578ad4d10dff8ab1d53a890782.png)
Следующий интеграл согласно таблицам (Двайт) 380.111
![$$\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{-c}}\arcsin(\frac{bm+2c}{m\sqrt{b^2-4ac}}\eqno (1,2)$$ $$\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{-c}}\arcsin(\frac{bm+2c}{m\sqrt{b^2-4ac}}\eqno (1,2)$$](https://dxdy-02.korotkov.co.uk/f/1/6/f/16fc6f689d3f679a8e2b00bc40c83e7982.png)
Для реальных
![$a,b,c$ $a,b,c$](https://dxdy-01.korotkov.co.uk/f/0/b/1/0b1666db7be254fa8998cf3a27c985bb82.png)
интеграл будет иметь вид:
![$$\frac{1}{\sqrt{-(-(R-r)^2)}}\arcsin(\frac{-2rm+2(-(R-r)^2}{m\sqrt{4r^2-4(-(R-r)^2})}$$ $$\frac{1}{\sqrt{-(-(R-r)^2)}}\arcsin(\frac{-2rm+2(-(R-r)^2}{m\sqrt{4r^2-4(-(R-r)^2})}$$](https://dxdy-04.korotkov.co.uk/f/3/3/e/33e7089ffe4cfa274fa54fc7446e3ed082.png)
![$$=\frac{1}{(R-r)}\arcsin\frac{-2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}$$ $$=\frac{1}{(R-r)}\arcsin\frac{-2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}$$](https://dxdy-01.korotkov.co.uk/f/c/8/0/c808808e276c893d9c0210ce7e13dda682.png)
В этом интеграле возвращаемся к переменной
![$t=m-r, m=t+r$ $t=m-r, m=t+r$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61eb465a81822dcc809549d3f382cdf782.png)
![$$\frac{1}{(R-r)}\arcsin\frac{-2r(t+r)-2(R-r)^2}{(t+r)\sqrt{4r^2+4(R-r)^2}}$$ $$\frac{1}{(R-r)}\arcsin\frac{-2r(t+r)-2(R-r)^2}{(t+r)\sqrt{4r^2+4(R-r)^2}}$$](https://dxdy-04.korotkov.co.uk/f/f/e/7/fe7e8c881a20b2f9a5c552a8e56a520282.png)
Переходим к переменной( х) при
![$t=\sqrt{x^2+r^2+(R-r)^2}$ $t=\sqrt{x^2+r^2+(R-r)^2}$](https://dxdy-01.korotkov.co.uk/f/0/9/9/09977b7cbef87f353b0135eed62718f082.png)
![$$\frac{1}{(R-r)}\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2}-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r+4(R-r)^2}}$$ $$\frac{1}{(R-r)}\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2}-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r+4(R-r)^2}}$$](https://dxdy-02.korotkov.co.uk/f/9/e/1/9e17ce8da942a37fc75525b494e72a8882.png)
Собираем выражение (1):
![$$(-1)(\sqrt{m^2-2rm-(R-r)^2}-r\ln(2\sqrt{m^2-2rm-(R-r)^2}+2m-2r)$$
$$-(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2)}-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R)^2})\sqrt{4r^2+4(R-r)^2}})\eqno (2)$$ $$(-1)(\sqrt{m^2-2rm-(R-r)^2}-r\ln(2\sqrt{m^2-2rm-(R-r)^2}+2m-2r)$$
$$-(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2)}-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R)^2})\sqrt{4r^2+4(R-r)^2}})\eqno (2)$$](https://dxdy-02.korotkov.co.uk/f/1/9/3/1933ad9c16cf75cccfe5de1426d25e2682.png)
Возвращаемся к переменной х в первых двух слагаемых:
![$m=t+r=\sqrt{x^2+r^2+(R-r)^2}+r$ $m=t+r=\sqrt{x^2+r^2+(R-r)^2}+r$](https://dxdy-01.korotkov.co.uk/f/8/d/2/8d2fd05315e9f314930d1fbfcb0fa91f82.png)
тогда
![$$=\sqrt{x^2+2r^2-2r^2}=x$$ $$=\sqrt{x^2+2r^2-2r^2}=x$$](https://dxdy-03.korotkov.co.uk/f/e/0/c/e0cce26ff8d692b2b1d793e8be5ac38482.png)
Тогда общий вид выражения (2) в переменных (х) будет иметь вид:
![$$(-1)(x-r\ln(2x+2(r+\sqrt{x^2+r^2+(R-r)^2})-2r)$$ $$-(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r^2+4(R-r)^2}})\eqno (3)$$ $$(-1)(x-r\ln(2x+2(r+\sqrt{x^2+r^2+(R-r)^2})-2r)$$ $$-(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r^2+4(R-r)^2}})\eqno (3)$$](https://dxdy-03.korotkov.co.uk/f/6/2/1/62120e98939cb4a14f5fe4057bc2cd1282.png)
Возвращаемся к выражению
![$I_{1}$ $I_{1}$](https://dxdy-03.korotkov.co.uk/f/2/1/2/21247423b14dba81563536a5cca81abd82.png)
, при интегрировании по частям и добавляем к полученному выше свободное выражение. Таким образом общий вид
![$I_{1}$ $I_{1}$](https://dxdy-03.korotkov.co.uk/f/2/1/2/21247423b14dba81563536a5cca81abd82.png)
в переменной (х) будет иметь вид:?
![$$I_{1}=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-x+$$ $$r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})$$ $$+(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r^2+4(R-r)^2}}$$ $$I_{1}=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-x+$$ $$r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})$$ $$+(R-r)\arcsin\frac{-2r(r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(r+\sqrt{x^2+r^2+(R-r)^2})\sqrt{4r^2+4(R-r)^2}}$$](https://dxdy-04.korotkov.co.uk/f/b/6/f/b6fe679f251501fa8cfc83ca56ce2d1f82.png)
Найдем
![$I_2$ $I_2$](https://dxdy-02.korotkov.co.uk/f/9/e/f/9eff113852463b85a970d2d65d52280c82.png)
![$I_2=\int\limits_{-r}^{+r}\ln\left\lbrace-r+\sqrt{r^2+x^2+(R-r)^2}\right\rbrace dx$ $I_2=\int\limits_{-r}^{+r}\ln\left\lbrace-r+\sqrt{r^2+x^2+(R-r)^2}\right\rbrace dx$](https://dxdy-02.korotkov.co.uk/f/1/7/c/17c152e8cba7a9dd50ef12583ff24c4e82.png)
берем по частям
![$dv=dx$ $dv=dx$](https://dxdy-01.korotkov.co.uk/f/4/c/1/4c1f6cbace9df1edb91047f7d49243a082.png)
![$I_2=x\ln\left\lbrace-r+\sqrt{x^2+r^2+(R-r)^2}\right\rbrace-\int_{}{}\frac{x^2dx}{(-r+\sqrt{x^2+r^2+(R-r)^2}) \sqrt{x^2+r^2+(R-r)^2}}$ $I_2=x\ln\left\lbrace-r+\sqrt{x^2+r^2+(R-r)^2}\right\rbrace-\int_{}{}\frac{x^2dx}{(-r+\sqrt{x^2+r^2+(R-r)^2}) \sqrt{x^2+r^2+(R-r)^2}}$](https://dxdy-01.korotkov.co.uk/f/0/5/3/05384672e7530472374e0716687b75e382.png)
![$(**)$ $(**)$](https://dxdy-04.korotkov.co.uk/f/f/4/0/f40bbedfaa9266106331853ea75c0de982.png)
![$t=\sqrt{x^2+r^2+(R-r)^2}$ $t=\sqrt{x^2+r^2+(R-r)^2}$](https://dxdy-01.korotkov.co.uk/f/0/9/9/09977b7cbef87f353b0135eed62718f082.png)
![$\,$ $\,$](https://dxdy-01.korotkov.co.uk/f/4/c/3/4c32da4e6f566c04c9943eb48e569ca782.png)
![$\to$ $\to$](https://dxdy-03.korotkov.co.uk/f/e/4/9/e49c6dac8af82421dba6bed976a80bd982.png)
![$dt=\frac{xdx}{\sqrt{x^2+r^2+(R-r)^2}}$ $dt=\frac{xdx}{\sqrt{x^2+r^2+(R-r)^2}}$](https://dxdy-02.korotkov.co.uk/f/1/f/a/1fa3d67a48f69d61a7744a865b46753882.png)
![$x=\sqrt{t^2-r^2-(R-r)^2}$ $x=\sqrt{t^2-r^2-(R-r)^2}$](https://dxdy-03.korotkov.co.uk/f/e/1/a/e1a0d2f74830ba694a965503bc2b70e582.png)
подставим в интеграл, получим:
![$(-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R-r)^2}dt}{(-r+t)}$ $(-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R-r)^2}dt}{(-r+t)}$](https://dxdy-04.korotkov.co.uk/f/b/7/d/b7d1d29389eda0422921e1bbfcb50cfe82.png)
делаем подстановку
![$m=-r+t$ $m=-r+t$](https://dxdy-01.korotkov.co.uk/f/4/b/1/4b1c3d311fbf5c59f28b57ccb53bbd1082.png)
,
![$t=m+r$ $t=m+r$](https://dxdy-02.korotkov.co.uk/f/5/8/4/58454a0f883da40cac8e6286dd666dd982.png)
,
![$dm=dt$ $dm=dt$](https://dxdy-02.korotkov.co.uk/f/9/3/4/93415b4b88ef2da9aaca0cc868ac258a82.png)
, получаем:
![$(-1)\int\limits_{}^{}\frac{\sqrt{(m+r)^2-r^2-(R-r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R-r)^2}}{m}dm$ $(-1)\int\limits_{}^{}\frac{\sqrt{(m+r)^2-r^2-(R-r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R-r)^2}}{m}dm$](https://dxdy-03.korotkov.co.uk/f/e/e/7/ee79f1fe2aa90a24595c9c25fd412d6a82.png)
,
![$a=1$ $a=1$](https://dxdy-01.korotkov.co.uk/f/8/4/a/84a2ab6b1772a3b44140c9cb57391e6582.png)
,
![$b=+2r.
$ $b=+2r.
$](https://dxdy-03.korotkov.co.uk/f/6/3/5/635aa85d4c6f66dcec0bc828cb6e25c882.png)
,
![$c=-(R-r)^2$ $c=-(R-r)^2$](https://dxdy-01.korotkov.co.uk/f/4/0/3/40311d3896686f65583a91e52e32490b82.png)
Согласно таблицам интегралов(Двайт) 380.311:
![$\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}$ $\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}$](https://dxdy-01.korotkov.co.uk/f/4/2/c/42c56b191a8ac5daac42b013aeb5bd8682.png)
получится следующее выражение:
![$(-1)[\sqrt{m^2+2rm-(R-r)^2}+\frac{2r}{2}\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R-r)^2}}-(R-r)^2\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R-r)^2}}]$ $(-1)[\sqrt{m^2+2rm-(R-r)^2}+\frac{2r}{2}\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R-r)^2}}-(R-r)^2\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R-r)^2}}]$](https://dxdy-01.korotkov.co.uk/f/c/d/d/cdd18f20bb520fdd97ca0884e33c406082.png)
Интеграл во втором слагаемом согласно таблицам: 380.001,
![$a\geqslant0$ $a\geqslant0$](https://dxdy-02.korotkov.co.uk/f/9/d/b/9dbcfa336eb39f24e29de396821d0a2982.png)
![$\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2\sqrt{a(am^2+bm+c)}+2am+b|$ $\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2\sqrt{a(am^2+bm+c)}+2am+b|$](https://dxdy-01.korotkov.co.uk/f/0/5/e/05eb24c062148aea1f96ca37dd47db3982.png)
,
![$$\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R-r)^2}}=\ln(2\sqrt{m^2+2rm-(R-r)^2}+2m+2r)$$ $$\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R-r)^2}}=\ln(2\sqrt{m^2+2rm-(R-r)^2}+2m+2r)$$](https://dxdy-01.korotkov.co.uk/f/0/8/f/08fa995ce736f553a62ad5997b3c64ea82.png)
интеграл в третьем слагаемом согласно таблицам 380.111
![$c\leqslant0$ $c\leqslant0$](https://dxdy-04.korotkov.co.uk/f/f/d/9/fd9b1874e059316f80abb3d154b79bc482.png)
,
![$b^2\geqslant4ac$ $b^2\geqslant4ac$](https://dxdy-02.korotkov.co.uk/f/d/f/7/df77d36b1299182c9396f37e420c055f82.png)
![$\frac{1}{\sqrt{-(-(R-r)^2}}\arcsin\frac{2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}$ $\frac{1}{\sqrt{-(-(R-r)^2}}\arcsin\frac{2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}$](https://dxdy-04.korotkov.co.uk/f/7/4/2/742c153d79317cf3ab66f5e4c1bb347082.png)
Подставим в выражение(**):
![$I_2=x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})+(-1)[\sqrt{m^2+2rm-(R-r)^2}+r\ln(2\sqrt{m^2+2rm-(R-r)}+2m+2r)-(R-r)\arcsin\frac{2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}]$ $I_2=x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})+(-1)[\sqrt{m^2+2rm-(R-r)^2}+r\ln(2\sqrt{m^2+2rm-(R-r)}+2m+2r)-(R-r)\arcsin\frac{2rm-2(R-r)^2}{m\sqrt{4r^2+4(R-r)^2}}]$](https://dxdy-02.korotkov.co.uk/f/d/9/d/d9dc643efef4cf68abb8ce016991fdb782.png)
Переходим к переменной t и далее к переменной х:
![$m=-r+t=(-r+\sqrt{x^2+r^2+(R-r)^2})$ $m=-r+t=(-r+\sqrt{x^2+r^2+(R-r)^2})$](https://dxdy-03.korotkov.co.uk/f/a/8/2/a8272616d8d58955b76d26aebbadc07082.png)
тогда
![$\sqrt{(-r+\sqrt{x^2+r^2+(R-r)^2})^2+2r(-r+\sqrt{x^2+r^2+(R-r)^2})-(R-r)^2}=$ $\sqrt{(-r+\sqrt{x^2+r^2+(R-r)^2})^2+2r(-r+\sqrt{x^2+r^2+(R-r)^2})-(R-r)^2}=$](https://dxdy-04.korotkov.co.uk/f/b/5/6/b561dbf49fde3e2bacaa91ca764e515582.png)
![$\sqrt{r^2-2r\sqrt{x^2+r^2+(R-r)^2}+x^2+r^2+(R-r)^2-2r^2+2r\sqrt{x^2+r^2+(R-r)^2}$ $\sqrt{r^2-2r\sqrt{x^2+r^2+(R-r)^2}+x^2+r^2+(R-r)^2-2r^2+2r\sqrt{x^2+r^2+(R-r)^2}$](https://dxdy-02.korotkov.co.uk/f/d/1/1/d1118abbbf0bf8376449e330b97f903c82.png)
продолжение корня
![$\sqrt{-(R-r)^2}}=x$ $\sqrt{-(R-r)^2}}=x$](https://dxdy-03.korotkov.co.uk/f/2/9/4/29491198125ae0d2cc7469db166df8da82.png)
после преобразования
![$I_2=x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})+(R-r)\arcsin\frac{2r(-r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(-r+\sqrt{x^2+r^2+(R-r)^2}\sqrt{4r^2+4(R-r)^2}}$ $I_2=x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})+(R-r)\arcsin\frac{2r(-r+\sqrt{x^2+r^2+(R-r)^2})-2(R-r)^2}{(-r+\sqrt{x^2+r^2+(R-r)^2}\sqrt{4r^2+4(R-r)^2}}$](https://dxdy-03.korotkov.co.uk/f/e/f/a/efaf789d679e6b8a54fc3507bd4d082982.png)
Найдем
![$I_3$ $I_3$](https://dxdy-01.korotkov.co.uk/f/c/9/4/c94d3ee7b7a5bca25eea4250c9bee2b982.png)
![$I_3=\int\limits_{-r}^{+r}\ln(r+\sqrt{x^2+r^2+(R+r)^2})dx$ $I_3=\int\limits_{-r}^{+r}\ln(r+\sqrt{x^2+r^2+(R+r)^2})dx$](https://dxdy-03.korotkov.co.uk/f/e/5/3/e53c594d105c04e69cca835f43a2f09582.png)
берем по частям
![$dv=dx$ $dv=dx$](https://dxdy-01.korotkov.co.uk/f/4/c/1/4c1f6cbace9df1edb91047f7d49243a082.png)
![$I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-\int\limits_{}^{}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{x^2+r^2+(R+r)^2}}$ $I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-\int\limits_{}^{}\frac{x^2dx}{(r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{x^2+r^2+(R+r)^2}}$](https://dxdy-01.korotkov.co.uk/f/4/c/2/4c24d9c4e1fb38de90642b2617d209ca82.png)
![$(***)$ $(***)$](https://dxdy-03.korotkov.co.uk/f/2/8/3/283c4825c8d2fd3359da54637382225a82.png)
![$dt=\frac{xdx}{\sqrt{x^2+r^2+(R+r)^2}}$ $dt=\frac{xdx}{\sqrt{x^2+r^2+(R+r)^2}}$](https://dxdy-01.korotkov.co.uk/f/0/2/3/02365b18d1488a9671f1ede3a19ef1fa82.png)
,
![$x=\sqrt{t^2-r^2-(R+r)^2}$ $x=\sqrt{t^2-r^2-(R+r)^2}$](https://dxdy-02.korotkov.co.uk/f/1/e/4/1e4f8059e39daef737db91bce17b0d5282.png)
, подставим в интеграл, получим:
![$(-1)\int\limits_{}^{}\frac{\sqrt{t^2+r^2-(R+r)^2}}{r+t}dt$ $(-1)\int\limits_{}^{}\frac{\sqrt{t^2+r^2-(R+r)^2}}{r+t}dt$](https://dxdy-03.korotkov.co.uk/f/e/d/2/ed2d1865ec11425f31f196ba69beb6f882.png)
, замена переменной:
![$m=r+t$ $m=r+t$](https://dxdy-04.korotkov.co.uk/f/7/5/2/752cdfaec3917dffdd745c8b2219f73382.png)
,
![$(-1\int\limits_{}^{}\frac{\sqrt{(m-r)^2-r^2-(R+r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2rm-(R+r)^2}}{m}dm$ $(-1\int\limits_{}^{}\frac{\sqrt{(m-r)^2-r^2-(R+r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2-2rm-(R+r)^2}}{m}dm$](https://dxdy-01.korotkov.co.uk/f/0/9/0/090c934b667ae8a3b7ca7154d040ad2882.png)
,
![$a=1$ $a=1$](https://dxdy-01.korotkov.co.uk/f/8/4/a/84a2ab6b1772a3b44140c9cb57391e6582.png)
,
![$b=-2r$ $b=-2r$](https://dxdy-04.korotkov.co.uk/f/f/7/b/f7bfb352bf3f0f8389a189451a8db38e82.png)
,
![$c=-(R+r)^2$ $c=-(R+r)^2$](https://dxdy-02.korotkov.co.uk/f/d/c/d/dcd1167bc17865bb9455cec014af8bb882.png)
Согласно таблицам интегралов(Двайт) 380.311
![$\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}$ $\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}$](https://dxdy-01.korotkov.co.uk/f/4/2/c/42c56b191a8ac5daac42b013aeb5bd8682.png)
Интеграл во втором слагаемом согласно таблицам 380.001 равен
![$a\geqslant0$ $a\geqslant0$](https://dxdy-02.korotkov.co.uk/f/9/d/b/9dbcfa336eb39f24e29de396821d0a2982.png)
:
![$\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2(a\sqrt{am^2+bm+c})+2am+b|$ $\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2(a\sqrt{am^2+bm+c})+2am+b|$](https://dxdy-01.korotkov.co.uk/f/8/0/7/807984979b7346104ca41b5fbb5d5e5482.png)
![$\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2rm-(R+r)^2}}=\ln(2\sqrt{m^2-2rm-(R+r)^2}+2m-2r)$ $\int\limits_{}^{}\frac{dm}{\sqrt{m^2-2rm-(R+r)^2}}=\ln(2\sqrt{m^2-2rm-(R+r)^2}+2m-2r)$](https://dxdy-02.korotkov.co.uk/f/d/f/5/df5a881bda11331e12e0f24ecf7e2d7f82.png)
Интеграл в третьем слагаемом согласно таблицам 380.111
![$c\leqslant0$ $c\leqslant0$](https://dxdy-04.korotkov.co.uk/f/f/d/9/fd9b1874e059316f80abb3d154b79bc482.png)
,
![$b^2\geqslant4ac$ $b^2\geqslant4ac$](https://dxdy-02.korotkov.co.uk/f/d/f/7/df77d36b1299182c9396f37e420c055f82.png)
![$\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{-c}}\arcsin\frac{bm+2c}{|m|\sqrt{b^2-4ac}}$ $\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{-c}}\arcsin\frac{bm+2c}{|m|\sqrt{b^2-4ac}}$](https://dxdy-01.korotkov.co.uk/f/4/f/c/4fc5afc6dbecb8b70563692bc7ad5efb82.png)
тогда
![$\int\limits_{}^{}\frac{dm}{m\sqrt{m^2-2rm-(R+r)^2}}=\frac{1}{(R+r)}\arcsin\frac{-2rm-2(R+r)^2}{m\sqrt{4r^2-(-(R+r))}}$ $\int\limits_{}^{}\frac{dm}{m\sqrt{m^2-2rm-(R+r)^2}}=\frac{1}{(R+r)}\arcsin\frac{-2rm-2(R+r)^2}{m\sqrt{4r^2-(-(R+r))}}$](https://dxdy-01.korotkov.co.uk/f/8/6/f/86f14b351e93c6b2fc85ef4ef4e4eeec82.png)
, подставляем в (***)
![$I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})+$ $I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})+$](https://dxdy-02.korotkov.co.uk/f/5/d/1/5d13d9c3069571fc75d85abea2b4806f82.png)
![$(-1)\left\lbrace[\sqrt{m^2-2rm-(R+r)^2}-$ $(-1)\left\lbrace[\sqrt{m^2-2rm-(R+r)^2}-$](https://dxdy-01.korotkov.co.uk/f/8/1/f/81f7c0f4200fb0ee6863b68922c5db7282.png)
![$r\ln(2\sqrt{m^2-2rm-(R+r)^2}+2m-2r)-$ $r\ln(2\sqrt{m^2-2rm-(R+r)^2}+2m-2r)-$](https://dxdy-01.korotkov.co.uk/f/4/8/9/4892c33da3521e49fc4195bcc3ac53c282.png)
![$\frac{(R+r)^2}{(R+r)}\arcsin\frac{-2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r)^2))}}]$ $\frac{(R+r)^2}{(R+r)}\arcsin\frac{-2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r)^2))}}]$](https://dxdy-03.korotkov.co.uk/f/e/e/b/eeb9883f4664167f9808b89da74eff1082.png)
, в выражениях в скобках возвращаемся сначала к переменной t, а далее к пер. х, так как
![$m=r+t=r+$$\sqrt{x^2+r^2+(R+r)^2}$ $m=r+t=r+$$\sqrt{x^2+r^2+(R+r)^2}$](https://dxdy-03.korotkov.co.uk/f/e/b/7/eb7a6fadcbdebd40fb4b6ff6d32eda7882.png)
![$\sqrt{m^2-2rm-(R+r)^2}=$ $\sqrt{m^2-2rm-(R+r)^2}=$](https://dxdy-02.korotkov.co.uk/f/5/b/6/5b61abce993a5efdcdd64a59a76d8b2182.png)
![$\sqrt{(r+\sqrt{x^2+r^2+(R+r)^2})^2-2r(r+\sqrt{x^2+r^2+(R+r)^2})-(R+r)^2}=$ $\sqrt{(r+\sqrt{x^2+r^2+(R+r)^2})^2-2r(r+\sqrt{x^2+r^2+(R+r)^2})-(R+r)^2}=$](https://dxdy-01.korotkov.co.uk/f/0/6/2/06221712c492ddafd50c3e9592dbe4c282.png)
![$\sqrt{r^2+2r\sqrt{x^2+r^2+(R+r)^2}+x^2+r^2+(R+r)^2-2r^2-2r\sqrt{x^2+r^2+(R+r)^2}$ $\sqrt{r^2+2r\sqrt{x^2+r^2+(R+r)^2}+x^2+r^2+(R+r)^2-2r^2-2r\sqrt{x^2+r^2+(R+r)^2}$](https://dxdy-01.korotkov.co.uk/f/c/f/a/cfadd5c1b1cde0af5027a086dd61917682.png)
![$-(R+r)^2}=x$ $-(R+r)^2}=x$](https://dxdy-03.korotkov.co.uk/f/a/3/3/a33c446a91772a1eb48a71720e5edaed82.png)
![$I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-x+r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+(R+r)\arcsin)\frac{-2r(r+\sqrt{x^2+r^2+(R+r)^2})-2(R+r)^2}{(r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{4r^2+4(R+r)^2})}$ $I_3=x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-x+r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+(R+r)\arcsin)\frac{-2r(r+\sqrt{x^2+r^2+(R+r)^2})-2(R+r)^2}{(r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{4r^2+4(R+r)^2})}$](https://dxdy-04.korotkov.co.uk/f/f/d/1/fd1e77babe5495b5563ef013535f2a5982.png)
найдем
![$ I_4$ $ I_4$](https://dxdy-02.korotkov.co.uk/f/d/d/8/dd82684798e5b639ce61800343376d9e82.png)
![$I_4=\int\limits_{-r}^{+r}\ln(-r+\sqrt{x^2+r^2+(R+r)^2})dx$ $I_4=\int\limits_{-r}^{+r}\ln(-r+\sqrt{x^2+r^2+(R+r)^2})dx$](https://dxdy-02.korotkov.co.uk/f/9/4/5/9454ad85ffa36b56a2414c2fc4f0d25682.png)
интегрируем по частям
![$u=\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$ $u=\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$](https://dxdy-02.korotkov.co.uk/f/9/9/b/99b9aa474fdea84900a8c8582ce3ce8182.png)
,
![$dv=dx$ $dv=dx$](https://dxdy-01.korotkov.co.uk/f/4/c/1/4c1f6cbace9df1edb91047f7d49243a082.png)
![$I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-\int\limits_{}^{}\frac{x^2}{(-r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{x^2+r^2+(R+r)^2}}dx$ $I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-\int\limits_{}^{}\frac{x^2}{(-r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{x^2+r^2+(R+r)^2}}dx$](https://dxdy-03.korotkov.co.uk/f/a/d/d/add7f991378ef6cd5afe4cc848f4c8a082.png)
![$(****)$ $(****)$](https://dxdy-01.korotkov.co.uk/f/0/d/9/0d9109fa13dee5ab05a8363b0afe6a2f82.png)
![$t=\sqrt{x^2+r^2+(R+r)^2}$ $t=\sqrt{x^2+r^2+(R+r)^2}$](https://dxdy-01.korotkov.co.uk/f/4/a/a/4aa21dde3b1a1a218b4fd7314fbceb3a82.png)
,
![$dt=\frac{x}{\sqrt{x^2+r^2+(R+r)^2}}dx$ $dt=\frac{x}{\sqrt{x^2+r^2+(R+r)^2}}dx$](https://dxdy-04.korotkov.co.uk/f/7/a/3/7a3e714c5027d8a2bc6830e5e21726d282.png)
,
![$x=\sqrt{t^2-r^2-(R+r)^2}$ $x=\sqrt{t^2-r^2-(R+r)^2}$](https://dxdy-02.korotkov.co.uk/f/1/e/4/1e4f8059e39daef737db91bce17b0d5282.png)
Подставим в интеграл(****)
![$(-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R+r)^2}}{-r+t}dt$ $(-1)\int\limits_{}^{}\frac{\sqrt{t^2-r^2-(R+r)^2}}{-r+t}dt$](https://dxdy-04.korotkov.co.uk/f/3/1/5/3150e52e3bf0cf7565a0c9e6da508fcc82.png)
,
![$m=-r+t$ $m=-r+t$](https://dxdy-01.korotkov.co.uk/f/4/b/1/4b1c3d311fbf5c59f28b57ccb53bbd1082.png)
,
![$t=m+r$ $t=m+r$](https://dxdy-02.korotkov.co.uk/f/5/8/4/58454a0f883da40cac8e6286dd666dd982.png)
,
![$dt=dm$ $dt=dm$](https://dxdy-03.korotkov.co.uk/f/a/a/9/aa91a0deff3e02187a39971e434324aa82.png)
![$(-1)\int\limits_{}^{}\frac{\sqrt{(m+r)^2-r^2-(R+r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R+r)^2}}{m}dm$ $(-1)\int\limits_{}^{}\frac{\sqrt{(m+r)^2-r^2-(R+r)^2}}{m}dm=(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R+r)^2}}{m}dm$](https://dxdy-02.korotkov.co.uk/f/1/3/1/131518e42a1f9a29788493be48f2ac8282.png)
,
![$a=1$ $a=1$](https://dxdy-01.korotkov.co.uk/f/8/4/a/84a2ab6b1772a3b44140c9cb57391e6582.png)
,
![$b=2r$ $b=2r$](https://dxdy-04.korotkov.co.uk/f/b/f/4/bf450a787a27573c671b266a11d005a682.png)
,
![$c=-(R+r)^2$ $c=-(R+r)^2$](https://dxdy-02.korotkov.co.uk/f/d/c/d/dcd1167bc17865bb9455cec014af8bb882.png)
Согласно таблицам интегралов(Двайт)380.311:
![$\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}dm=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\frac{dm}{m\sqrt{am^2+bm+c}}$ $\int\limits_{}^{}\frac{\sqrt{am^2+bm+c}}{m}dm=\sqrt{am^2+bm+c}+\frac{b}{2}\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}+c\frac{dm}{m\sqrt{am^2+bm+c}}$](https://dxdy-02.korotkov.co.uk/f/5/1/6/51633e1ffcb540eac3eb264eec9b0afc82.png)
![$(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R+r)^2}}{m}dm=(-1)[\sqrt{m^2+2rm-(R+r)^2}+r\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R+r)^2}}-(R+r)^2\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R+r)^2}}]$ $(-1)\int\limits_{}^{}\frac{\sqrt{m^2+2rm-(R+r)^2}}{m}dm=(-1)[\sqrt{m^2+2rm-(R+r)^2}+r\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R+r)^2}}-(R+r)^2\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R+r)^2}}]$](https://dxdy-02.korotkov.co.uk/f/9/f/7/9f707bb60dfe3343e3265f375fd3463a82.png)
интеграл второго слагаемого в скобках согласно таблицам 380.001
![$a\geqslant0$ $a\geqslant0$](https://dxdy-02.korotkov.co.uk/f/9/d/b/9dbcfa336eb39f24e29de396821d0a2982.png)
![$\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2(\sqrt{a(am^2+bm+c)}+2am+b|$ $\int\limits_{}^{}\frac{dm}{\sqrt{am^2+bm+c}}=\frac{1}{\sqrt{a}}\ln|2(\sqrt{a(am^2+bm+c)}+2am+b|$](https://dxdy-01.korotkov.co.uk/f/8/a/3/8a3a891aec8d18492a3843f42e3f769e82.png)
![$\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R+r)^2}}=\ln(2\sqrt{m^2+2rm-(R+r)^2}+2m+2r)$ $\int\limits_{}^{}\frac{dm}{\sqrt{m^2+2rm-(R+r)^2}}=\ln(2\sqrt{m^2+2rm-(R+r)^2}+2m+2r)$](https://dxdy-04.korotkov.co.uk/f/3/6/c/36c06f5e13147057ce67f9bb8295f24c82.png)
Интеграл третьего слагаемого в скобках согласно таблицам 380.111
![$c\leqslant0$ $c\leqslant0$](https://dxdy-04.korotkov.co.uk/f/f/d/9/fd9b1874e059316f80abb3d154b79bc482.png)
,
![$b^2\geqslant4ac$ $b^2\geqslant4ac$](https://dxdy-02.korotkov.co.uk/f/d/f/7/df77d36b1299182c9396f37e420c055f82.png)
![$\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{-\sqrt{c}}\arcsin\frac{bm+2c}{|m|\sqrt{b^2-4ac}}$ $\int\limits_{}^{}\frac{dm}{m\sqrt{am^2+bm+c}}=\frac{1}{-\sqrt{c}}\arcsin\frac{bm+2c}{|m|\sqrt{b^2-4ac}}$](https://dxdy-01.korotkov.co.uk/f/0/4/d/04d577aa31975162ce8a078c02c1873a82.png)
![$\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R+r)^2}}=\frac{1}{(R+r)}\arcsin\frac{2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r))}}$ $\int\limits_{}^{}\frac{dm}{m\sqrt{m^2+2rm-(R+r)^2}}=\frac{1}{(R+r)}\arcsin\frac{2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r))}}$](https://dxdy-01.korotkov.co.uk/f/c/3/e/c3edc6a4915ccbc94e693deca1ccc2b982.png)
Подставляем в выражение(****):
![$I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})+$ $I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})+$](https://dxdy-03.korotkov.co.uk/f/e/d/7/ed770c372468e4ef7c635d1ca575b2eb82.png)
![$(-1)\left\lbrace[\sqrt{m^2+2rm-(R+r)^2}+r\ln(2\sqrt{m^2+2rm-(R+r)^2}+2m+2r)$ $(-1)\left\lbrace[\sqrt{m^2+2rm-(R+r)^2}+r\ln(2\sqrt{m^2+2rm-(R+r)^2}+2m+2r)$](https://dxdy-03.korotkov.co.uk/f/2/d/e/2de316ac3fe283c0c07eb64029d0d10882.png)
![$-(R+r)\arcsin\frac{2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r)^2)}}]$ $-(R+r)\arcsin\frac{2rm-2(R+r)^2}{m\sqrt{4r^2-4(-(R+r)^2)}}]$](https://dxdy-03.korotkov.co.uk/f/6/9/3/693efb262f5788e3c0f8e8985444655a82.png)
Вернемся к переменной t и далее к х:
![$m=-r+t=-r+\sqrt{x^2+r^2+(R+r)^2}$ $m=-r+t=-r+\sqrt{x^2+r^2+(R+r)^2}$](https://dxdy-01.korotkov.co.uk/f/4/3/d/43d6f245b56c846be6465e98fabc565c82.png)
![$\sqrt{m^2+2r-(R+r)^2}=$ $\sqrt{m^2+2r-(R+r)^2}=$](https://dxdy-02.korotkov.co.uk/f/d/0/4/d0411a911d19f261a0098bd9860df30a82.png)
![$\sqrt{(-r+\sqrt{x^2+r^2+(R+r)^2})+2r(-r+\sqrt{x^2+r^2+(R+r)^2})-(R+r)^2}=$ $\sqrt{(-r+\sqrt{x^2+r^2+(R+r)^2})+2r(-r+\sqrt{x^2+r^2+(R+r)^2})-(R+r)^2}=$](https://dxdy-01.korotkov.co.uk/f/4/9/6/4966a365fe19240ce9ceecf531822e8c82.png)
![$-(R+r)^2}=x$ $-(R+r)^2}=x$](https://dxdy-03.korotkov.co.uk/f/a/3/3/a33c446a91772a1eb48a71720e5edaed82.png)
![$I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+(R+r)\arcsin\frac{2r(-r+\sqrt{x^2+r^2+(R+r)^2})-2(R+r)^2}{(-r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{4r^2+4(R+r)^2}}$ $I_4=x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+(R+r)\arcsin\frac{2r(-r+\sqrt{x^2+r^2+(R+r)^2})-2(R+r)^2}{(-r+\sqrt{x^2+r^2+(R+r)^2})\sqrt{4r^2+4(R+r)^2}}$](https://dxdy-04.korotkov.co.uk/f/b/5/e/b5e2edb5a45c82341efec567f163995882.png)
Вернемся к напряженности гравиполя
![$H=I_1-I_2-I_3+I_4$ $H=I_1-I_2-I_3+I_4$](https://dxdy-04.korotkov.co.uk/f/f/7/5/f75a03c8c777c92cb259bc56c339632e82.png)
При подстановке пределов для
![$x=-r$ $x=-r$](https://dxdy-01.korotkov.co.uk/f/c/b/d/cbd76c0cae7b969cb6ba3be1d2c5012b82.png)
,
![$x=+r$ $x=+r$](https://dxdy-01.korotkov.co.uk/f/0/3/d/03d30484a906cb2e11f1647da2e6a69582.png)
, все члены, где есть арксинус сократятся, т.к.
![$x^2$ $x^2$](https://dxdy-03.korotkov.co.uk/f/6/1/7/6177db6fc70d94fdb9dbe1907695fce682.png)
,
![$(-r)^2=(+r)^2$ $(-r)^2=(+r)^2$](https://dxdy-02.korotkov.co.uk/f/d/f/e/dfe03a548a327487adeb584f615cfe1082.png)
, следовательно останутся:
![$H=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-x+r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$ $H=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})-x+r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-02.korotkov.co.uk/f/5/4/e/54e3b740c2b60f39d4fd7995844a0b2e82.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})+x+r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$ $x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})+x+r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-03.korotkov.co.uk/f/6/6/6/6665ba8535c5e5d535b1268a6947d19f82.png)
![$x\ln(r+\sqrt{x^2+r^2+(R+r)^2})+x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+$ $x\ln(r+\sqrt{x^2+r^2+(R+r)^2})+x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+$](https://dxdy-01.korotkov.co.uk/f/8/a/b/8ab0bbb0567f4473590a128343923e5582.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})$ $x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})-x-r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})$](https://dxdy-03.korotkov.co.uk/f/6/6/7/667b41d0ed56106ca0358fbb90f8432482.png)
Х-ы, сокращаются. В оставшемся выражении складываем одинаковые логарифмы:
![$x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+2r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$ $x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+2r\ln(2x+2\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-03.korotkov.co.uk/f/6/5/d/65d72b40f322d4b7fd6572b673684e3d82.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$ $x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-03.korotkov.co.uk/f/e/a/8/ea86423fd77c3f46fce01f5fe6508ec882.png)
![$x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+$ $x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln(2x+2\sqrt{x^2+r^2+(R+r)^2})+$](https://dxdy-03.korotkov.co.uk/f/e/3/f/e3f25cb949c19e3c99ad7e8061aaa7eb82.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$ $x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$](https://dxdy-02.korotkov.co.uk/f/d/b/6/db69466dfc8ead637a592347a88da78b82.png)
В слагаемых выносим 2 из под знака логарифма:
![$x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+$ $x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+$](https://dxdy-01.korotkov.co.uk/f/0/0/e/00ee2568df6c9a9c84742484ae9103d782.png)
![$2r\ln2+2r\ln(x+\sqrt{x^2+r^2+(R-r)^2})-$ $2r\ln2+2r\ln(x+\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-02.korotkov.co.uk/f/9/8/c/98c25a966d169eb3c13653ec9551ddce82.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$ $x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-03.korotkov.co.uk/f/e/a/8/ea86423fd77c3f46fce01f5fe6508ec882.png)
![$x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln2-2r\ln(x+\sqrt{x^2+r^2+(R+r)^2})+$ $x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln2-2r\ln(x+\sqrt{x^2+r^2+(R+r)^2})+$](https://dxdy-02.korotkov.co.uk/f/1/0/0/1004866ae0bf0a157b5eade57242ca8682.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$ $x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$](https://dxdy-02.korotkov.co.uk/f/d/b/6/db69466dfc8ead637a592347a88da78b82.png)
После сокращения получим:
![$H=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+2r\ln(x+\sqrt{x^2+r^2+(R-r)^2}-$ $H=x\ln(r+\sqrt{x^2+r^2+(R-r)^2})+2r\ln(x+\sqrt{x^2+r^2+(R-r)^2}-$](https://dxdy-03.korotkov.co.uk/f/2/2/a/22a8d962a1ab301cda109a1819d0531782.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$ $x\ln(-r+\sqrt{x^2+r^2+(R-r)^2})-$](https://dxdy-03.korotkov.co.uk/f/e/a/8/ea86423fd77c3f46fce01f5fe6508ec882.png)
![$x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln(x+\sqrt{x^2+r^2+(R+r)^2}+$ $x\ln(r+\sqrt{x^2+r^2+(R+r)^2})-2r\ln(x+\sqrt{x^2+r^2+(R+r)^2}+$](https://dxdy-01.korotkov.co.uk/f/8/a/0/8a026ba02700e1d502dc482760edd1b082.png)
![$x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$ $x\ln(-r+\sqrt{x^2+r^2+(R+r)^2})$](https://dxdy-02.korotkov.co.uk/f/d/b/6/db69466dfc8ead637a592347a88da78b82.png)
поставим пределы интегрирования
![$x=-r$ $x=-r$](https://dxdy-01.korotkov.co.uk/f/c/b/d/cbd76c0cae7b969cb6ba3be1d2c5012b82.png)
,
![$x=+r$ $x=+r$](https://dxdy-01.korotkov.co.uk/f/0/3/d/03d30484a906cb2e11f1647da2e6a69582.png)
, получим:
![$H=r\ln(r+\sqrt{r^2+r^2+(R-r)^2})+r\ln(r+\sqrt{r^2+r^2+(R-r)^2})+$ $H=r\ln(r+\sqrt{r^2+r^2+(R-r)^2})+r\ln(r+\sqrt{r^2+r^2+(R-r)^2})+$](https://dxdy-02.korotkov.co.uk/f/9/5/7/957ad00ae5c8f12e39d44504d40cf4f182.png)
![$+2[r\ln(r+\sqrt{r^2+r^2+(R-r)^2})-r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})]$ $+2[r\ln(r+\sqrt{r^2+r^2+(R-r)^2})-r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})]$](https://dxdy-04.korotkov.co.uk/f/f/7/2/f721e1d17db74fc6403d41e19b24aa7f82.png)
![$-[r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})+r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})]$ $-[r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})+r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})]$](https://dxdy-03.korotkov.co.uk/f/e/d/4/ed45a88ad08ae839872ed16c179f03f982.png)
![$-[r\ln(r+\sqrt{r^2+r^2+(R+r)^2})+r\ln(r+\sqrt{r^2+r^2+(R+r)^2})]$ $-[r\ln(r+\sqrt{r^2+r^2+(R+r)^2})+r\ln(r+\sqrt{r^2+r^2+(R+r)^2})]$](https://dxdy-04.korotkov.co.uk/f/f/2/1/f2167d6b223afd3357d4381459ad24c882.png)
![$-2[r\ln(r+\sqrt{r^2+r^2+(R+r)^2})-r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})]$ $-2[r\ln(r+\sqrt{r^2+r^2+(R+r)^2})-r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})]$](https://dxdy-01.korotkov.co.uk/f/0/1/7/0174fd007e89fb7cc9f85b33706c6bc482.png)
![$+r\ln(-r+$\sqrt{r^2+r^2+(R+r)^2})+r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})$ $+r\ln(-r+$\sqrt{r^2+r^2+(R+r)^2})+r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})$](https://dxdy-02.korotkov.co.uk/f/5/a/0/5a0d0a4b101d0e923c35bd54a557b49682.png)
----------------------------------------------------------------------------
![$H=4r\ln(r+\sqrt{r^2+r^2+(R-r)^2})-4r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})$ $H=4r\ln(r+\sqrt{r^2+r^2+(R-r)^2})-4r\ln(-r+\sqrt{r^2+r^2+(R-r)^2})$](https://dxdy-04.korotkov.co.uk/f/7/d/2/7d29bb688ef222ac55d90ea4bcdb177582.png)
![$-4r\ln(r+\sqrt{r^2+r^2+(R+r)^2})+4r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})$ $-4r\ln(r+\sqrt{r^2+r^2+(R+r)^2})+4r\ln(-r+\sqrt{r^2+r^2+(R+r)^2})$](https://dxdy-01.korotkov.co.uk/f/4/7/8/478df82b12fd1f7aec5d4c2fb6a0ea6f82.png)
Преобразуем с учетом гравитационной постоянной и плотности куба
![$\rho_{k}$ $\rho_{k}$](https://dxdy-02.korotkov.co.uk/f/1/2/4/124e6a95208fb9d3a8999eea479fb56282.png)
![$$H=4rG\rho_{k}\ln[\frac{(r+\sqrt{2r^2+(R-r)^2})(-r+\sqrt{2r^2+(R+r)^2})}{(-r+\sqrt{2r^2+(R-r)^2})(r+\sqrt{2r^2+(R+r)^2})}]$$ $$H=4rG\rho_{k}\ln[\frac{(r+\sqrt{2r^2+(R-r)^2})(-r+\sqrt{2r^2+(R+r)^2})}{(-r+\sqrt{2r^2+(R-r)^2})(r+\sqrt{2r^2+(R+r)^2})}]$$](https://dxdy-03.korotkov.co.uk/f/6/f/4/6f48def36a076ce56cb5cebdb0a70d1082.png)
пусть куб с ребром
![$2r$ $2r$](https://dxdy-04.korotkov.co.uk/f/7/e/b/7ebdc2e1c46d20336a265d5d195beb0882.png)
и шар радиусом
![$r$ $r$](https://dxdy-01.korotkov.co.uk/f/8/9/f/89f2e0d2d24bcf44db73aab8fc03252c82.png)
и плотности
![$\rho_{0}$ $\rho_{0}$](https://dxdy-04.korotkov.co.uk/f/f/9/1/f91f6a925d0bc8f9dd4afb71dbeab22382.png)
, имеют одну и ту же массу:
Тогда плотность шара будет выражаться:
Напряженность гравиполя шара равна:
найдем отношение поля шара к полю куба:
Приведем к единой плотности
![$\rho_{k}$ $\rho_{k}$](https://dxdy-02.korotkov.co.uk/f/1/2/4/124e6a95208fb9d3a8999eea479fb56282.png)
:
Введем переменную :
Тогда выражение (*) будет иметь вид:
![$$\frac{H_0}{H_{k}}=\frac{\frac{2}{n^2}}{\ln[\frac{(1+\sqrt{2+(n-1)^2})(-1+\sqrt{2+(n+1)^2})}{(-1+\sqrt{2+(n-1)^2})(1+\sqrt{2+(n+1)^2})}]}$$ $$\frac{H_0}{H_{k}}=\frac{\frac{2}{n^2}}{\ln[\frac{(1+\sqrt{2+(n-1)^2})(-1+\sqrt{2+(n+1)^2})}{(-1+\sqrt{2+(n-1)^2})(1+\sqrt{2+(n+1)^2})}]}$$](https://dxdy-01.korotkov.co.uk/f/0/a/8/0a826fb6a912791fb1f2512125541d0382.png)
Предел этого выражения при
![$n$ $n$](https://dxdy-02.korotkov.co.uk/f/5/5/a/55a049b8f161ae7cfeb0197d75aff96782.png)
стремящимся к бесконечности равен 0.5:
После упрощения выражение будет иметь вид:
Берем производную от числителя и знаменателя:
То есть на бесконечности куб будет притягивать в два раза сильнее.
Но это ошибочный результат.