2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 не теряющий связность граф
Сообщение18.05.2023, 09:30 


18/05/23
6
дан связный неориентированный граф $G$ на $n$ вершинах с $n-2$ рёбрами. необходимо доказать, что в нём можно выбрать цикл и удалить все его рёбра так, чтобы граф не потерял связность. в $G$ нет петель и кратных рёбер.

решая проблему, я выделил какое-нибудь остовное дерево и покрасил его рёбра в красный, а оставшиеся рёбра - в синий. итого по $n-1$ красных и синих рёбер.

если какая-то группа из синих рёбер образует цикл, то мы его, очевидно, удаляем и побеждаем. иначе, и красные рёбра, и синие рёбра вместе с вершинами $G$ образуют по дереву...

примечание: указанная проблема является подзадачей. предупреждаю, что я не могу быть на 100% уверен в истинности утверждения. однако я полагаю, что оно всё же верно.

заранее спасибо за любую помощь

 Профиль  
                  
 
 Posted automatically
Сообщение18.05.2023, 09:33 
Админ форума


02/02/19
3038
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы). Даже отдельные обозначения должны быть оформлены как формулы.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение18.05.2023, 09:46 
Админ форума


02/02/19
3038
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: не теряющий связность граф
Сообщение18.05.2023, 11:32 
Заслуженный участник
Аватара пользователя


01/09/13
4845
ovalox в сообщении #1594299 писал(а):
дан связный неориентированный граф $G$ на $n$ вершинах с $n-2$ рёбрами.

А такое бывает?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: 12d3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group