2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Существует ли функция которая равна алгебраическому корню X
Сообщение09.03.2023, 17:28 


28/02/23
6
Раз функция определяется как " соответствие между элементами двух множеств, причем каждому элементу первого множества, называемого областью определения, соответствует один и только один элемент второго множества ",тогда вопрос, не существует ведь функции от $x$, которая равна алгебраическому корню от $x$ , так как алгебраический корень от$x = y$ и алгебраический корень от$x = -y$ ?Зачем вообще такое правило, почему именно для каждого аргумента существует лишь одно значение?

 Профиль  
                  
 
 Posted automatically
Сообщение09.03.2023, 17:31 
Админ форума


02/02/19
2515
 i  Тема перемещена из форума «Математика (общие вопросы)» в форум «Карантин»
по следующим причинам:
- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы)

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение09.03.2023, 18:21 
Админ форума


02/02/19
2515
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение09.03.2023, 19:09 
Заслуженный участник
Аватара пользователя


01/08/06
3131
Уфа
Obivatel в сообщении #1584928 писал(а):
...вопрос, не существует ведь функции от $x$, которая равна алгебраическому корню от $x$...
Всё верно, не существует такой функции.

Цитата:
Зачем вообще такое правило, почему именно для каждого аргумента существует лишь одно значение?
Есть много других встречающихся на практике случаев, когда мы рассматриваем не многозначные функции, и в частности, не алгебраические корни. Настолько часто встречающихся, что выгоднее под коротким термином "функция" подразумевать именно однозначную функцию. Когда нам нужно рассмотреть алгебраические корни, мы не говорим про "функцию", а говорим, например, про "многозначную функцию" или как-то по-другому справляемся с фактом неоднозначности. Если кто-то постоянно имеет дело с неоднозначными функциями, ему это, конечно, не очень удобно, но математики жертвуют этим его удобством в пользу удобства тех, кто постоянно работает с однозначными функциями (которых абсолютное большинство).

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение09.03.2023, 19:18 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
Obivatel в сообщении #1584928 писал(а):
Зачем вообще такое правило, почему именно для каждого аргумента существует лишь одно значение?
Потому что сопоставления такого вида обладают многими хорошими свойствами. Например, если у вас есть функция, которая из вещественного числа делает одно вещественное число, то можно взять значение этой функции в двух разных точках - это будут два вещественных числа и что-то про них сказать - например, какое из них больше. А вот если бы функция возвращала два числа, то что с ними делать - непонятно.

Есть понятие многозначной функции - это как раз обобщение понятия функции, чтобы одному аргументу могло соответствовать несколько значений. Но это на самом деле замаскированные обычные функции, просто их значение - не объект, а множество объектов.
Они активно используются в комплексном анализе, но там рассматриваются не просто какие в голову взбредет многозначные функции - "числу $5$ сопоставим числа $3$ и $7$, числу $8$ все числа от $0$ до $42$ включительно, а числу $13$ вообще ничего сопоставлять не будем" - а некоторые очень специальные, про которые опять же можно сказать что-то разумное.

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение09.03.2023, 20:22 
Заслуженный участник
Аватара пользователя


23/07/08
10907
Crna Gora
Ещё одно хорошее свойство — возможность композиции функций, то есть возможность использовать результат одной функции в качестве аргумента другой функции. Например, результат вычисления синуса можно возвести в квадрат.

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение10.03.2023, 00:19 
Заслуженный участник


14/10/14
1220
Комплексный квадратный корень -- это то, что называется "аналитическая функция в смысле Вейерштрасса" (и не является "функцией" в обычном смысле слова).

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение10.03.2023, 13:17 


28/02/23
6
worm2 в сообщении #1584938 писал(а):
Obivatel в сообщении #1584928 писал(а):
...вопрос, не существует ведь функции от $x$, которая равна алгебраическому корню от $x$...
Всё верно, не существует такой функции.

Цитата:
Зачем вообще такое правило, почему именно для каждого аргумента существует лишь одно значение?
Есть много других встречающихся на практике случаев, когда мы рассматриваем не многозначные функции, и в частности, не алгебраические корни. Настолько часто встречающихся, что выгоднее под коротким термином "функция" подразумевать именно однозначную функцию. Когда нам нужно рассмотреть алгебраические корни, мы не говорим про "функцию", а говорим, например, про "многозначную функцию" или как-то по-другому справляемся с фактом неоднозначности. Если кто-то постоянно имеет дело с неоднозначными функциями, ему это, конечно, не очень удобно, но математики жертвуют этим его удобством в пользу удобства тех, кто постоянно работает с однозначными функциями (которых абсолютное большинство).

Но зачем вообще разделять?Почему делить на многозначные и однозначные?
Может из-за того, что есть общие свойства, которые различают два этих вида? Нельзя ли просто подразумевать под функцией и то,и другое.С многозначными функциями я не знаком

-- 10.03.2023, 14:23 --

mihaild в сообщении #1584939 писал(а):
Obivatel в сообщении #1584928 писал(а):
Зачем вообще такое правило, почему именно для каждого аргумента существует лишь одно значение?
Потому что сопоставления такого вида обладают многими хорошими свойствами. Например, если у вас есть функция, которая из вещественного числа делает одно вещественное число, то можно взять значение этой функции в двух разных точках - это будут два вещественных числа и что-то про них сказать - например, какое из них больше. А вот если бы функция возвращала два числа, то что с ними делать - непонятно.

Есть понятие многозначной функции - это как раз обобщение понятия функции, чтобы одному аргументу могло соответствовать несколько значений. Но это на самом деле замаскированные обычные функции, просто их значение - не объект, а множество объектов.
Они активно используются в комплексном анализе, но там рассматриваются не просто какие в голову взбредет многозначные функции - "числу $5$ сопоставим числа $3$ и $7$, числу $8$ все числа от $0$ до $42$ включительно, а числу $13$ вообще ничего сопоставлять не будем" - а некоторые очень специальные, про которые опять же можно сказать что-то разумное.

Ага,т.е. в многозначные входят однозначные функции?А рассматривают однозначные отдельно просто из соображений удобства.

 Профиль  
                  
 
 Re: Существует ли функция которая равна алгебраическому корню X
Сообщение10.03.2023, 13:51 
Админ форума


02/02/19
2515
Obivatel
Пожалуйста, цитируйте только ту часть сообщения, на которую отвечаете. Чтобы процитировать часть сообщения, выделите ее мышкой и нажмите на кнопку "Вставка" под этим сообщением (именно под этим, не под другим).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group