2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 00:05 
Аватара пользователя


07/03/06
128
Всем доброго здоровья.
Известно, что $\{V_n\}$ стационарная случайная последовательность с ограниченным вторым моментом (не обязательно нормальная!) с матожиданием $\nu$, отличным от нуля. У меня в распоряжении находится реализация $N$ подряд идущих членов этой последовательности:
$$
v_0,\, v_1,\, ...,\, v_{N-1}\; ,
$$где $N$ много больше характерного радиуса кореляции. (Например, радиус корреляции порядка $20$, а $N\approx 3000$.) Надо предложить наилучшую формулу для вычисления значения матожидания $\nu$.
Во всех учебниках предлагается следующая классическая формула:
$$
\tilde\nu_1 = \frac{1}{N}\sum_{n=0}^{N-1} v_n\; .
$$Неужели нет формулы лучше этой? Рассмотрим следующую альтернативу...
Определим нестационарную случайную последовательность $\{X_n\}$ на основе исходной:
$$ 
X_{n+1} - X_n = V_n\;,\qquad X_0 = 0\; .
$$Её матожидание должно быть линейной функцией от $n$. Построим теперь соответствующую детерминированную последовательность:
$$
x_n = \sum_{k=0}^{n-1} v_k\, , \qquad n = 1,\, 2,\, ...,\, N\; .
$$Построим линейную регрессию для $\{x_n\}$ и определим оценку $\tilde\nu_2 = a_{\rf lr}$ согласно коэффиценту наклона линейной регресии. Моя практика показывает, что оценка $\tilde\nu_2$ лучше чем $\tilde\nu_1$.
Как это грамотно обосновать? Какая есть литература?

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 01:50 
Заслуженный участник


18/09/21
1765
Кролик в сообщении #1580976 писал(а):
Как это грамотно обосновать? Какая есть литература?
Любой учебник по теорверу, где рассматривают оценки (estimation).

Оценка сама по себе - это тоже случайная величина. Для неё можно найти матожидание и дисперсию.
При конечном $N$ интересует, смещенная оценка или нет - совпадает её матожидание с искомым параметорм или нет? Если не совпадает, то как сильно?
Ну и дисперсия тоже важна. Насколько она маленькая?
Далее, интересуются асимптотикой этих характеристик оценки. Как быстро они улучшаются с ростом $N$?

Вот так и сравнивайте свои оценки.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 07:10 
Аватара пользователя


22/07/22

897
Кролик в сообщении #1580976 писал(а):
Неужели нет формулы лучше этой?

Вроде как для нормального распределения нет, ибо она из ММП. Ваша оценка (вроде) не совпадает, а значит :roll:

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 08:27 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
Выглядит крайне сомнительно. В частности, потому, что дисперсия элементов последовательности $X_n$ растёт. Обычные формулы регрессии неприменимы. Но если у Вас есть подтверждения, например, вычислительный эксперимент - было бы интересно взглянуть.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 08:37 
Аватара пользователя


22/07/22

897
Да, если расписать, то вы берете взвешенную сумму измерений с неравными весами, а это увеличит дисперсию

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 09:23 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
$v_i=\nu+\varepsilon_i$
$X_i=i\nu+\Sigma_{j=1}^i\varepsilon_j$
Если взять регрессию без свободного члена

$\hat{\nu}=\frac {\Sigma i X_i}{\Sigma i^2}= \\ \frac {\nu\Sigma i^2+ \Sigma_i(i\Sigma_{j=1}^i\varepsilon_j)}{\Sigma i^2}= \\ \nu+\frac{\Sigma_i (\frac{n(n+1)(2n+1)} 6 -\frac{(i-1)i(2i-1)} 6) \varepsilon_i}{\frac{n(n+1)(2n+1)} 6}=\\ \nu+\Sigma_i (1-\frac{(i-1)i(2i-1)}{n(n+1)(2n+1)}) \varepsilon_i

В общем, я хотел бы видеть основания для утверждения, что предложенный подход работает лучше, нежели простое среднее арифметическое.
Вообще же могу представить ситуацию, когда среднее арифметическое не лучшее, например, распределение с тяжёлыми хвостами, и медиана эффективнее. Или когда сильно влияет коррелированность отсчётов, и её можно оценить. Но в общем случае - хотел бы подтверждений.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 10:26 
Аватара пользователя


07/03/06
128
Евгений Машеров в сообщении #1580993 писал(а):
Выглядит крайне сомнительно. В частности, потому, что дисперсия элементов последовательности $X_n$ растёт. Обычные формулы регрессии неприменимы.
В каком смысле непреминимы формулы регрессии на конечной реализации? Я был бы очень благодарен за более подробное объяснение этой мысли.
При больших $n$ дисперсия новой последовательности растёт линейно, как и само матожидание (предположим, положительное). Те есть, СКО растёт как $\sqrt{n}$, а следовательно, относительный разброс падает, чего не происходит в исходной последовательности. (Это интуитивное обоснование...)

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 10:52 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
В проведенном навскидку вычислительном эксперименте, в котором генерировалось по 100 чисел $v_i \sim N(1,1)$, оценивалось среднее "штатным" и предлагаемым способом и вычислялся средний квадрат отклонения от известного значения, он оказался для предлагаемого способа на 41% выше, чем для обычного (усреднение по 36 реализациям). Хотелось бы видеть либо масштабный вычислительный эксперимент, показывающий преимущества изложенного способа (и условия, при которых он лучше - по-видимому, условия, когда он хуже, точно существуют, а условия, когда "лучше" могут и не существовать; ну, или указать на методические ошибки в моём экспериментк), либо теоретические обоснования его (опять же - для каких условий он может быть лучше?). Ну, или и то и другое и можно без хлеба.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 12:15 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
Кролик в сообщении #1581004 писал(а):
В каком смысле непреминимы формулы регрессии на конечной реализации?


При выводе формул регрессионного анализа предполагалось, что дисперсия ошибки постоянна. Ситуация, когда она меняется от наблюдения к наблюдению (гетероскедастичность) - возможна, но формулы уже будут иными (вводится матрица весов). Здесь же не только возрастает, но и зависима (то есть диагональной матрицей весов не обойтись). Принципиальная возможность построить оценку есть, но оценка резко усложняется, и ни из чего не следует, что она будет лучше общепринятой (контрпример - нормальное распределение, для которого оптимальность среднего арифметического доказана, уже был приведен; возможно, есть ситуации, когда предлагаемая оценка лучше - но я в их существовании решительно не убеждён).
В принципе - тема для исследования вычислительным экспериментом, на хорошую курсовую или доклад на студенческой конференции. Если вдруг, паче чаяния, окажется, что действительно оценка лучше - на статью, даже на диссертацию. Но не я Станиславский и не Ярославский - однако
Цитата:
не верю!

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 12:30 
Аватара пользователя


07/03/06
128
Doctor Boom в сообщении #1580988 писал(а):
Кролик в сообщении #1580976 писал(а):
Неужели нет формулы лучше этой?

Вроде как для нормального распределения нет, ибо она из ММП. Ваша оценка (вроде) не совпадает, а значит :roll:
-- Распределение не нормальное, но аналитической формулы для него нет. Эксперимент показывает, что матожидение, похоже, смещено относительно моды, то есть в нём плотность вероятности не максимальна. Оценить надо именно матожидание.
Нужна специальная литература, в которой рассматривались статистические оценки матожидания стационарных случайных последовательностей (не нормальных!). Возможно кто-то уже сталкивался с похожей проблемой?
Цитата:
$$
\tilde\nu_2= \nu+\sum_i \left(1-\frac{(i-1)i(2i-1)}{n(n+1)(2n+1)}\right) \varepsilon_i
$$
-- Может быть эта случайная величина будет более нормальной?

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 15:32 


27/06/20
337
Евгений Машеров в сообщении #1580993 писал(а):
потому, что дисперсия элементов последовательности $X_n$ растёт
Много большим грехом тут является плотная нарастающая зависимость случайных величин в предлагаемом ряду (даже не учитывая того, что в изначальной последовательности с нулевой интегрируемостью автокорреляция автором тоже не исключается).

Евгений Машеров в сообщении #1581002 писал(а):
регрессию без свободного члена
Почти наверняка автор делал обычную регрессию со свободным членом. :-(

-- 10.02.2023, 15:45 --

Кролик в сообщении #1580976 писал(а):
Моя практика показывает, что оценка $\tilde\nu_2$ лучше чем $\tilde\nu_1$.
Если так получается, то может быть, ряд X вовсе не ряд, а тренд-стационарный процесс (а последовательность V уже искусственное производное).
Слелайте над ним тест на единичные корни (особенно против тренд-стационарности). Или можете показать свой ряд, мы сами посмотрим.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 16:11 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
ipgmvq в сообщении #1581018 писал(а):
Почти наверняка автор делал обычную регрессию со свободным членом. :-(


Вполне вероятно. Но, по всей видимости, этот подход даст ещё меньшую точность.

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение10.02.2023, 23:27 


27/06/20
337
Евгений Машеров в сообщении #1580993 писал(а):
Обычные формулы регрессии неприменимы.
Предлагаю пойти от обратного.
Допустим, закономерность в основе экспериментальной случайной последовательности была предположена неверно и на самом деле это X является тренд-стационарным процессом.
$X_t = \beta_0 + \beta_1 t + \varepsilon $
И наблюдаемые значения $X_1, X_2, X_3, ... X_n$ индексированы временем $t = 1, 2, 3, ... n$ и истинная $\beta_0 = 0$.
Допустим дрифт $\beta_1 = 1$ и $Var(\varepsilon) = \sigma^2 = 1$.
Соответственно $V_i = X_i - X_{i-1}$.
Матрица X линейной регрессии будет равна
$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
... & ... \\
1 & n
\end{bmatrix}$
И дисперсия ошибок истинных параметров $\beta$ будет равна
$$Var \left( \begin{bmatrix}
\beta_0  \\
\beta_1
\end{bmatrix} \right) = \sigma^2 \begin{bmatrix}
n & \frac{n(n-1)}{2} \\ 
\frac{n(n-1)}{2} & \sum_{i=1}^{n}i^2
\end{bmatrix}^{-1} = $

$ = \sigma^2 \begin{bmatrix}
 \frac{ \sum_{i=1}^{n}i^2 }{ n\sum_{i=1}^{n}i^2 - \frac{n^2(n-1)^2}{4} } & -\frac{ \frac{n(n-1)}{2} }{ n\sum_{i=1}^{n}i^2 - \frac{n^2(n-1)^2}{4}  }  \\ 
 -\frac{ \frac{n(n-1)}{2} }{ n\sum_{i=1}^{n}i^2 - \frac{n^2(n-1)^2}{4}  }  & \frac{ n }{ n\sum_{i=1}^{n}i^2 - \frac{n^2(n-1)^2}{4}  } 
\end{bmatrix} = $

$ = \sigma^2 \begin{bmatrix}
 \frac{ \sum_{i=1}^{n}i^2 }{ n\sum_{i=1}^{n}i^2 - \frac{n^2(n-1)^2}{4} } & -\frac{ n-1 }{ 2\sum_{i=1}^{n}i^2 - \frac{n(n-1)^2}{2}  }  \\ 
 -\frac{ n-1 }{ 2\sum_{i=1}^{n}i^2 - \frac{n(n-1)^2}{2}  }  & \frac{ 1 }{ \sum_{i=1}^{n}i^2 - \frac{n(n-1)^2}{4}  } 
\end{bmatrix} $$

Соответственно $ Var(\hat{ \beta_1 }) = \frac{ \sigma^2 }{ \sum_{i=1}^{n} i^2 - \frac{ n (n-1)^2 }{4} } $

Если же мы рассмотрим оценку

$ \frac{1}{n-1} \sum\limits_{i=2}^{n} V_i = \frac{1}{n-1} \sum\limits_{i=2}^{n} X_i - X_{i-1} = \frac{X_n - X_1}{n-1} $, то его матожижание окажется несмещенным

$ \mathbb{E} (\frac{X_n - X_1}{n-1}) = \frac{1}{n-1} \mathbb{E} (X_n - X_1) = \frac{1}{n-1} (\mathbb{E} (X_n) - \mathbb{E} (X_1)) = \frac{n-1}{n-1} = 1 = \beta_1 $

и дисперсия будет равна

$ Var(\frac{X_n - X_1}{n-1}) = \frac{1}{(n-1)^2} Var(X_n - X_1) = \frac{1}{(n-1)^2} (Var(X_n) + Var(X_1)) = \frac{2 \sigma^2}{(n-1)^2} $

$\frac{2 \sigma^2}{(n-1)^2} $ при нарастании n убывает намного быстрее, чем $ \frac{ \sigma^2 }{ \sum_{i=1}^{n} i^2 - \frac{ n (n-1)^2 }{4} } $
Соответственно даже в таком случае линейная регрессия кажется хуже.
я ничего не напутал?

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение11.02.2023, 20:01 
Аватара пользователя


07/03/06
128
Большое всем спасибо за подробные объяснения.
ipgmvq в сообщении #1581067 писал(а):
Соответственно даже в таком случае линейная регрессия кажется хуже.
-- Но разве это не кажется странным? Есть конечная реализация некоторой случайной последовательности $\{X_n\}$ с дрейфом $\nu$ (детерминированный параметр): $x_0,\, x_2,\, ...,\, x_{N-1}$ (выхваченная из ряда значений случайным образом!). И наилучшая формула оценки параметра:
$$
\tilde\nu_1 = \frac{x_{N-1}-x_0}{N}\; ,
$$опирается только на 2 значения! Предположим, мы ищем оптимальную формулу для оценки, подбирая веса $w$ в линейной комбинации:
$$
\tilde\nu_3 = w_0 x_0 + w_1 x_1 + ... + w_{N-1} x_{N-1}\; .
$$Неужели нет лучшего вектора весов, чем ${\bf w} = (-1/N,\, 0,\, ...,\, 0,\, 1/N)^{\rf T}$ ? :facepalm:
Возможно подобного рода вопросы уже обсуждались в научной литературе?

 Профиль  
                  
 
 Re: Оценка матожидания стационарной случайной последовательности
Сообщение11.02.2023, 22:34 
Заслуженный участник
Аватара пользователя


11/03/08
9970
Москва
Если бы у Вас был тренд, отягощённый независимыми отклонениями, то регрессия была бы хороша. А если Вы переходите к накопленным значениям, то отклонения независимыми не будут.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 74 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild, Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group