"связная односвязная группа Ли"
Не совсем. Пишут "связная И односвязная", через союз "и". То есть смысл такой: а давайте рассмотрим группу Ли, да не всякую, а связную, и притом не просто связную, а еще и односвязную. Строго говоря, можно было бы писать просто "односвязную", связность не упоминая, но такова традиция. А когда союз опущен, это создает впечатление, что бывают односвязные группы связные, а бывают односвязные и не связные.
В оригинале, посмотрите, написано "connected, simply connected". Запятая и играет роль союза. При переводе она пропала ... короче, ляп перевода.
Следовательно петли могут лежать только в определенных компонентах связности, где они очевидно стягиваемы.
Вовсе нет. Группа
не односвязна, у нее есть двойное накрытие, называемое "спинорная группа",
.
Не знаю что бы тут присоветовать ... ну, Постников, Группы и алгебры Ли. Полезная книжка.
-- 31.01.2023, 21:05 --Да, а при
универсальное накрытие для
вообще бесконечнократное, и фундаментальная группа
. Это при
.
-- 31.01.2023, 21:13 --Однако последнее рассуждение можно обобщить вообще на произвольное топологическое пространство и сказать, что если топологическое пространство состоит из нескольких несвязных компонент, каждая из которых односвязна (пусть заодно и линейно связна), то оно является примером несвязного односвязного пространства.
Скажите, пожалуйста, правильно ли я рассуждаю?
Нет, не правильно. Понятие односвязности применять к несвязным пространствам не принято. В крайнем случае можно сказать "топологическое пространство, каждая компонента связности которого односвязна". Притом еще надо разграничивать связность и линейную связность, ибо это не одно и то же (связность слабее).